Spaces:
Running
on
A10G
Running
on
A10G
import cv2 | |
import numpy as np | |
import math | |
import time | |
from scipy.ndimage.filters import gaussian_filter | |
import matplotlib.pyplot as plt | |
import matplotlib | |
import torch | |
from torchvision import transforms | |
from typing import NamedTuple, List, Union | |
from . import util | |
from .model import bodypose_model | |
from .types import Keypoint, BodyResult | |
class Body(object): | |
def __init__(self, model_path): | |
self.model = bodypose_model() | |
# if torch.cuda.is_available(): | |
# self.model = self.model.cuda() | |
# print('cuda') | |
model_dict = util.transfer(self.model, torch.load(model_path)) | |
self.model.load_state_dict(model_dict) | |
self.model.eval() | |
def __call__(self, oriImg): | |
# scale_search = [0.5, 1.0, 1.5, 2.0] | |
scale_search = [0.5] | |
boxsize = 368 | |
stride = 8 | |
padValue = 128 | |
thre1 = 0.1 | |
thre2 = 0.05 | |
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] | |
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19)) | |
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) | |
for m in range(len(multiplier)): | |
scale = multiplier[m] | |
imageToTest = util.smart_resize_k(oriImg, fx=scale, fy=scale) | |
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) | |
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 | |
im = np.ascontiguousarray(im) | |
data = torch.from_numpy(im).float() | |
if torch.cuda.is_available(): | |
data = data.cuda() | |
# data = data.permute([2, 0, 1]).unsqueeze(0).float() | |
with torch.no_grad(): | |
data = data.to(self.cn_device) | |
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data) | |
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy() | |
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy() | |
# extract outputs, resize, and remove padding | |
# heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps | |
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps | |
heatmap = util.smart_resize_k(heatmap, fx=stride, fy=stride) | |
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] | |
heatmap = util.smart_resize(heatmap, (oriImg.shape[0], oriImg.shape[1])) | |
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs | |
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs | |
paf = util.smart_resize_k(paf, fx=stride, fy=stride) | |
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] | |
paf = util.smart_resize(paf, (oriImg.shape[0], oriImg.shape[1])) | |
heatmap_avg += heatmap_avg + heatmap / len(multiplier) | |
paf_avg += + paf / len(multiplier) | |
all_peaks = [] | |
peak_counter = 0 | |
for part in range(18): | |
map_ori = heatmap_avg[:, :, part] | |
one_heatmap = gaussian_filter(map_ori, sigma=3) | |
map_left = np.zeros(one_heatmap.shape) | |
map_left[1:, :] = one_heatmap[:-1, :] | |
map_right = np.zeros(one_heatmap.shape) | |
map_right[:-1, :] = one_heatmap[1:, :] | |
map_up = np.zeros(one_heatmap.shape) | |
map_up[:, 1:] = one_heatmap[:, :-1] | |
map_down = np.zeros(one_heatmap.shape) | |
map_down[:, :-1] = one_heatmap[:, 1:] | |
peaks_binary = np.logical_and.reduce( | |
(one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1)) | |
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse | |
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] | |
peak_id = range(peak_counter, peak_counter + len(peaks)) | |
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))] | |
all_peaks.append(peaks_with_score_and_id) | |
peak_counter += len(peaks) | |
# find connection in the specified sequence, center 29 is in the position 15 | |
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ | |
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ | |
[1, 16], [16, 18], [3, 17], [6, 18]] | |
# the middle joints heatmap correpondence | |
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \ | |
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \ | |
[55, 56], [37, 38], [45, 46]] | |
connection_all = [] | |
special_k = [] | |
mid_num = 10 | |
for k in range(len(mapIdx)): | |
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]] | |
candA = all_peaks[limbSeq[k][0] - 1] | |
candB = all_peaks[limbSeq[k][1] - 1] | |
nA = len(candA) | |
nB = len(candB) | |
indexA, indexB = limbSeq[k] | |
if (nA != 0 and nB != 0): | |
connection_candidate = [] | |
for i in range(nA): | |
for j in range(nB): | |
vec = np.subtract(candB[j][:2], candA[i][:2]) | |
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) | |
norm = max(0.001, norm) | |
vec = np.divide(vec, norm) | |
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \ | |
np.linspace(candA[i][1], candB[j][1], num=mid_num))) | |
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \ | |
for I in range(len(startend))]) | |
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \ | |
for I in range(len(startend))]) | |
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1]) | |
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min( | |
0.5 * oriImg.shape[0] / norm - 1, 0) | |
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts) | |
criterion2 = score_with_dist_prior > 0 | |
if criterion1 and criterion2: | |
connection_candidate.append( | |
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]]) | |
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) | |
connection = np.zeros((0, 5)) | |
for c in range(len(connection_candidate)): | |
i, j, s = connection_candidate[c][0:3] | |
if (i not in connection[:, 3] and j not in connection[:, 4]): | |
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]]) | |
if (len(connection) >= min(nA, nB)): | |
break | |
connection_all.append(connection) | |
else: | |
special_k.append(k) | |
connection_all.append([]) | |
# last number in each row is the total parts number of that person | |
# the second last number in each row is the score of the overall configuration | |
subset = -1 * np.ones((0, 20)) | |
candidate = np.array([item for sublist in all_peaks for item in sublist]) | |
for k in range(len(mapIdx)): | |
if k not in special_k: | |
partAs = connection_all[k][:, 0] | |
partBs = connection_all[k][:, 1] | |
indexA, indexB = np.array(limbSeq[k]) - 1 | |
for i in range(len(connection_all[k])): # = 1:size(temp,1) | |
found = 0 | |
subset_idx = [-1, -1] | |
for j in range(len(subset)): # 1:size(subset,1): | |
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]: | |
subset_idx[found] = j | |
found += 1 | |
if found == 1: | |
j = subset_idx[0] | |
if subset[j][indexB] != partBs[i]: | |
subset[j][indexB] = partBs[i] | |
subset[j][-1] += 1 | |
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] | |
elif found == 2: # if found 2 and disjoint, merge them | |
j1, j2 = subset_idx | |
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2] | |
if len(np.nonzero(membership == 2)[0]) == 0: # merge | |
subset[j1][:-2] += (subset[j2][:-2] + 1) | |
subset[j1][-2:] += subset[j2][-2:] | |
subset[j1][-2] += connection_all[k][i][2] | |
subset = np.delete(subset, j2, 0) | |
else: # as like found == 1 | |
subset[j1][indexB] = partBs[i] | |
subset[j1][-1] += 1 | |
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] | |
# if find no partA in the subset, create a new subset | |
elif not found and k < 17: | |
row = -1 * np.ones(20) | |
row[indexA] = partAs[i] | |
row[indexB] = partBs[i] | |
row[-1] = 2 | |
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] | |
subset = np.vstack([subset, row]) | |
# delete some rows of subset which has few parts occur | |
deleteIdx = [] | |
for i in range(len(subset)): | |
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4: | |
deleteIdx.append(i) | |
subset = np.delete(subset, deleteIdx, axis=0) | |
# subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts | |
# candidate: x, y, score, id | |
return candidate, subset | |
def format_body_result(candidate: np.ndarray, subset: np.ndarray) -> List[BodyResult]: | |
""" | |
Format the body results from the candidate and subset arrays into a list of BodyResult objects. | |
Args: | |
candidate (np.ndarray): An array of candidates containing the x, y coordinates, score, and id | |
for each body part. | |
subset (np.ndarray): An array of subsets containing indices to the candidate array for each | |
person detected. The last two columns of each row hold the total score and total parts | |
of the person. | |
Returns: | |
List[BodyResult]: A list of BodyResult objects, where each object represents a person with | |
detected keypoints, total score, and total parts. | |
""" | |
return [ | |
BodyResult( | |
keypoints=[ | |
Keypoint( | |
x=candidate[candidate_index][0], | |
y=candidate[candidate_index][1], | |
score=candidate[candidate_index][2], | |
id=candidate[candidate_index][3] | |
) if candidate_index != -1 else None | |
for candidate_index in person[:18].astype(int) | |
], | |
total_score=person[18], | |
total_parts=person[19] | |
) | |
for person in subset | |
] | |
if __name__ == "__main__": | |
body_estimation = Body('../model/body_pose_model.pth') | |
test_image = '../images/ski.jpg' | |
oriImg = cv2.imread(test_image) # B,G,R order | |
candidate, subset = body_estimation(oriImg) | |
bodies = body_estimation.format_body_result(candidate, subset) | |
canvas = oriImg | |
for body in bodies: | |
canvas = util.draw_bodypose(canvas, body) | |
plt.imshow(canvas[:, :, [2, 1, 0]]) | |
plt.show() |