Spaces:
Running
on
A10G
Running
on
A10G
import logging | |
import numpy as np | |
from torchvision.transforms import ToTensor, ToPILImage | |
import torch | |
import torch.nn.functional as F | |
import cv2 | |
from . import util | |
from torch.nn import Conv2d, Module, ReLU, MaxPool2d, init | |
class FaceNet(Module): | |
"""Model the cascading heatmaps. """ | |
def __init__(self): | |
super(FaceNet, self).__init__() | |
# cnn to make feature map | |
self.relu = ReLU() | |
self.max_pooling_2d = MaxPool2d(kernel_size=2, stride=2) | |
self.conv1_1 = Conv2d(in_channels=3, out_channels=64, | |
kernel_size=3, stride=1, padding=1) | |
self.conv1_2 = Conv2d( | |
in_channels=64, out_channels=64, kernel_size=3, stride=1, | |
padding=1) | |
self.conv2_1 = Conv2d( | |
in_channels=64, out_channels=128, kernel_size=3, stride=1, | |
padding=1) | |
self.conv2_2 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=3, stride=1, | |
padding=1) | |
self.conv3_1 = Conv2d( | |
in_channels=128, out_channels=256, kernel_size=3, stride=1, | |
padding=1) | |
self.conv3_2 = Conv2d( | |
in_channels=256, out_channels=256, kernel_size=3, stride=1, | |
padding=1) | |
self.conv3_3 = Conv2d( | |
in_channels=256, out_channels=256, kernel_size=3, stride=1, | |
padding=1) | |
self.conv3_4 = Conv2d( | |
in_channels=256, out_channels=256, kernel_size=3, stride=1, | |
padding=1) | |
self.conv4_1 = Conv2d( | |
in_channels=256, out_channels=512, kernel_size=3, stride=1, | |
padding=1) | |
self.conv4_2 = Conv2d( | |
in_channels=512, out_channels=512, kernel_size=3, stride=1, | |
padding=1) | |
self.conv4_3 = Conv2d( | |
in_channels=512, out_channels=512, kernel_size=3, stride=1, | |
padding=1) | |
self.conv4_4 = Conv2d( | |
in_channels=512, out_channels=512, kernel_size=3, stride=1, | |
padding=1) | |
self.conv5_1 = Conv2d( | |
in_channels=512, out_channels=512, kernel_size=3, stride=1, | |
padding=1) | |
self.conv5_2 = Conv2d( | |
in_channels=512, out_channels=512, kernel_size=3, stride=1, | |
padding=1) | |
self.conv5_3_CPM = Conv2d( | |
in_channels=512, out_channels=128, kernel_size=3, stride=1, | |
padding=1) | |
# stage1 | |
self.conv6_1_CPM = Conv2d( | |
in_channels=128, out_channels=512, kernel_size=1, stride=1, | |
padding=0) | |
self.conv6_2_CPM = Conv2d( | |
in_channels=512, out_channels=71, kernel_size=1, stride=1, | |
padding=0) | |
# stage2 | |
self.Mconv1_stage2 = Conv2d( | |
in_channels=199, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv2_stage2 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv3_stage2 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv4_stage2 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv5_stage2 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv6_stage2 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=1, stride=1, | |
padding=0) | |
self.Mconv7_stage2 = Conv2d( | |
in_channels=128, out_channels=71, kernel_size=1, stride=1, | |
padding=0) | |
# stage3 | |
self.Mconv1_stage3 = Conv2d( | |
in_channels=199, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv2_stage3 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv3_stage3 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv4_stage3 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv5_stage3 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv6_stage3 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=1, stride=1, | |
padding=0) | |
self.Mconv7_stage3 = Conv2d( | |
in_channels=128, out_channels=71, kernel_size=1, stride=1, | |
padding=0) | |
# stage4 | |
self.Mconv1_stage4 = Conv2d( | |
in_channels=199, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv2_stage4 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv3_stage4 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv4_stage4 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv5_stage4 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv6_stage4 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=1, stride=1, | |
padding=0) | |
self.Mconv7_stage4 = Conv2d( | |
in_channels=128, out_channels=71, kernel_size=1, stride=1, | |
padding=0) | |
# stage5 | |
self.Mconv1_stage5 = Conv2d( | |
in_channels=199, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv2_stage5 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv3_stage5 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv4_stage5 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv5_stage5 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv6_stage5 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=1, stride=1, | |
padding=0) | |
self.Mconv7_stage5 = Conv2d( | |
in_channels=128, out_channels=71, kernel_size=1, stride=1, | |
padding=0) | |
# stage6 | |
self.Mconv1_stage6 = Conv2d( | |
in_channels=199, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv2_stage6 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv3_stage6 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv4_stage6 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv5_stage6 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=7, stride=1, | |
padding=3) | |
self.Mconv6_stage6 = Conv2d( | |
in_channels=128, out_channels=128, kernel_size=1, stride=1, | |
padding=0) | |
self.Mconv7_stage6 = Conv2d( | |
in_channels=128, out_channels=71, kernel_size=1, stride=1, | |
padding=0) | |
for m in self.modules(): | |
if isinstance(m, Conv2d): | |
init.constant_(m.bias, 0) | |
def forward(self, x): | |
"""Return a list of heatmaps.""" | |
heatmaps = [] | |
h = self.relu(self.conv1_1(x)) | |
h = self.relu(self.conv1_2(h)) | |
h = self.max_pooling_2d(h) | |
h = self.relu(self.conv2_1(h)) | |
h = self.relu(self.conv2_2(h)) | |
h = self.max_pooling_2d(h) | |
h = self.relu(self.conv3_1(h)) | |
h = self.relu(self.conv3_2(h)) | |
h = self.relu(self.conv3_3(h)) | |
h = self.relu(self.conv3_4(h)) | |
h = self.max_pooling_2d(h) | |
h = self.relu(self.conv4_1(h)) | |
h = self.relu(self.conv4_2(h)) | |
h = self.relu(self.conv4_3(h)) | |
h = self.relu(self.conv4_4(h)) | |
h = self.relu(self.conv5_1(h)) | |
h = self.relu(self.conv5_2(h)) | |
h = self.relu(self.conv5_3_CPM(h)) | |
feature_map = h | |
# stage1 | |
h = self.relu(self.conv6_1_CPM(h)) | |
h = self.conv6_2_CPM(h) | |
heatmaps.append(h) | |
# stage2 | |
h = torch.cat([h, feature_map], dim=1) # channel concat | |
h = self.relu(self.Mconv1_stage2(h)) | |
h = self.relu(self.Mconv2_stage2(h)) | |
h = self.relu(self.Mconv3_stage2(h)) | |
h = self.relu(self.Mconv4_stage2(h)) | |
h = self.relu(self.Mconv5_stage2(h)) | |
h = self.relu(self.Mconv6_stage2(h)) | |
h = self.Mconv7_stage2(h) | |
heatmaps.append(h) | |
# stage3 | |
h = torch.cat([h, feature_map], dim=1) # channel concat | |
h = self.relu(self.Mconv1_stage3(h)) | |
h = self.relu(self.Mconv2_stage3(h)) | |
h = self.relu(self.Mconv3_stage3(h)) | |
h = self.relu(self.Mconv4_stage3(h)) | |
h = self.relu(self.Mconv5_stage3(h)) | |
h = self.relu(self.Mconv6_stage3(h)) | |
h = self.Mconv7_stage3(h) | |
heatmaps.append(h) | |
# stage4 | |
h = torch.cat([h, feature_map], dim=1) # channel concat | |
h = self.relu(self.Mconv1_stage4(h)) | |
h = self.relu(self.Mconv2_stage4(h)) | |
h = self.relu(self.Mconv3_stage4(h)) | |
h = self.relu(self.Mconv4_stage4(h)) | |
h = self.relu(self.Mconv5_stage4(h)) | |
h = self.relu(self.Mconv6_stage4(h)) | |
h = self.Mconv7_stage4(h) | |
heatmaps.append(h) | |
# stage5 | |
h = torch.cat([h, feature_map], dim=1) # channel concat | |
h = self.relu(self.Mconv1_stage5(h)) | |
h = self.relu(self.Mconv2_stage5(h)) | |
h = self.relu(self.Mconv3_stage5(h)) | |
h = self.relu(self.Mconv4_stage5(h)) | |
h = self.relu(self.Mconv5_stage5(h)) | |
h = self.relu(self.Mconv6_stage5(h)) | |
h = self.Mconv7_stage5(h) | |
heatmaps.append(h) | |
# stage6 | |
h = torch.cat([h, feature_map], dim=1) # channel concat | |
h = self.relu(self.Mconv1_stage6(h)) | |
h = self.relu(self.Mconv2_stage6(h)) | |
h = self.relu(self.Mconv3_stage6(h)) | |
h = self.relu(self.Mconv4_stage6(h)) | |
h = self.relu(self.Mconv5_stage6(h)) | |
h = self.relu(self.Mconv6_stage6(h)) | |
h = self.Mconv7_stage6(h) | |
heatmaps.append(h) | |
return heatmaps | |
LOG = logging.getLogger(__name__) | |
TOTEN = ToTensor() | |
TOPIL = ToPILImage() | |
params = { | |
'gaussian_sigma': 2.5, | |
'inference_img_size': 736, # 368, 736, 1312 | |
'heatmap_peak_thresh': 0.1, | |
'crop_scale': 1.5, | |
'line_indices': [ | |
[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], | |
[6, 7], [7, 8], [8, 9], [9, 10], [10, 11], [11, 12], [12, 13], | |
[13, 14], [14, 15], [15, 16], | |
[17, 18], [18, 19], [19, 20], [20, 21], | |
[22, 23], [23, 24], [24, 25], [25, 26], | |
[27, 28], [28, 29], [29, 30], | |
[31, 32], [32, 33], [33, 34], [34, 35], | |
[36, 37], [37, 38], [38, 39], [39, 40], [40, 41], [41, 36], | |
[42, 43], [43, 44], [44, 45], [45, 46], [46, 47], [47, 42], | |
[48, 49], [49, 50], [50, 51], [51, 52], [52, 53], [53, 54], | |
[54, 55], [55, 56], [56, 57], [57, 58], [58, 59], [59, 48], | |
[60, 61], [61, 62], [62, 63], [63, 64], [64, 65], [65, 66], | |
[66, 67], [67, 60] | |
], | |
} | |
class Face(object): | |
""" | |
The OpenPose face landmark detector model. | |
Args: | |
inference_size: set the size of the inference image size, suggested: | |
368, 736, 1312, default 736 | |
gaussian_sigma: blur the heatmaps, default 2.5 | |
heatmap_peak_thresh: return landmark if over threshold, default 0.1 | |
""" | |
def __init__(self, face_model_path, | |
inference_size=None, | |
gaussian_sigma=None, | |
heatmap_peak_thresh=None): | |
self.inference_size = inference_size or params["inference_img_size"] | |
self.sigma = gaussian_sigma or params['gaussian_sigma'] | |
self.threshold = heatmap_peak_thresh or params["heatmap_peak_thresh"] | |
self.model = FaceNet() | |
self.model.load_state_dict(torch.load(face_model_path)) | |
# if torch.cuda.is_available(): | |
# self.model = self.model.cuda() | |
# print('cuda') | |
self.model.eval() | |
def __call__(self, face_img): | |
H, W, C = face_img.shape | |
w_size = 384 | |
x_data = torch.from_numpy(util.smart_resize(face_img, (w_size, w_size))).permute([2, 0, 1]) / 256.0 - 0.5 | |
x_data = x_data.to(self.cn_device) | |
with torch.no_grad(): | |
hs = self.model(x_data[None, ...]) | |
heatmaps = F.interpolate( | |
hs[-1], | |
(H, W), | |
mode='bilinear', align_corners=True).cpu().numpy()[0] | |
return heatmaps | |
def compute_peaks_from_heatmaps(self, heatmaps): | |
all_peaks = [] | |
for part in range(heatmaps.shape[0]): | |
map_ori = heatmaps[part].copy() | |
binary = np.ascontiguousarray(map_ori > 0.05, dtype=np.uint8) | |
if np.sum(binary) == 0: | |
continue | |
positions = np.where(binary > 0.5) | |
intensities = map_ori[positions] | |
mi = np.argmax(intensities) | |
y, x = positions[0][mi], positions[1][mi] | |
all_peaks.append([x, y]) | |
return np.array(all_peaks) |