Spaces:
Running
on
A10G
Running
on
A10G
import cv2 | |
import json | |
import numpy as np | |
import math | |
import time | |
from scipy.ndimage.filters import gaussian_filter | |
import matplotlib.pyplot as plt | |
import matplotlib | |
import torch | |
from skimage.measure import label | |
from .model import handpose_model | |
from . import util | |
class Hand(object): | |
def __init__(self, model_path): | |
self.model = handpose_model() | |
# if torch.cuda.is_available(): | |
# self.model = self.model.cuda() | |
# print('cuda') | |
model_dict = util.transfer(self.model, torch.load(model_path)) | |
self.model.load_state_dict(model_dict) | |
self.model.eval() | |
def __call__(self, oriImgRaw): | |
scale_search = [0.5, 1.0, 1.5, 2.0] | |
# scale_search = [0.5] | |
boxsize = 368 | |
stride = 8 | |
padValue = 128 | |
thre = 0.05 | |
multiplier = [x * boxsize for x in scale_search] | |
wsize = 128 | |
heatmap_avg = np.zeros((wsize, wsize, 22)) | |
Hr, Wr, Cr = oriImgRaw.shape | |
oriImg = cv2.GaussianBlur(oriImgRaw, (0, 0), 0.8) | |
for m in range(len(multiplier)): | |
scale = multiplier[m] | |
imageToTest = util.smart_resize(oriImg, (scale, scale)) | |
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) | |
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 | |
im = np.ascontiguousarray(im) | |
data = torch.from_numpy(im).float() | |
if torch.cuda.is_available(): | |
data = data.cuda() | |
with torch.no_grad(): | |
data = data.to(self.cn_device) | |
output = self.model(data).cpu().numpy() | |
# extract outputs, resize, and remove padding | |
heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps | |
heatmap = util.smart_resize_k(heatmap, fx=stride, fy=stride) | |
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] | |
heatmap = util.smart_resize(heatmap, (wsize, wsize)) | |
heatmap_avg += heatmap / len(multiplier) | |
all_peaks = [] | |
for part in range(21): | |
map_ori = heatmap_avg[:, :, part] | |
one_heatmap = gaussian_filter(map_ori, sigma=3) | |
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8) | |
if np.sum(binary) == 0: | |
all_peaks.append([0, 0]) | |
continue | |
label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim) | |
max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1 | |
label_img[label_img != max_index] = 0 | |
map_ori[label_img == 0] = 0 | |
y, x = util.npmax(map_ori) | |
y = int(float(y) * float(Hr) / float(wsize)) | |
x = int(float(x) * float(Wr) / float(wsize)) | |
all_peaks.append([x, y]) | |
return np.array(all_peaks) | |
if __name__ == "__main__": | |
hand_estimation = Hand('../model/hand_pose_model.pth') | |
# test_image = '../images/hand.jpg' | |
test_image = '../images/hand.jpg' | |
oriImg = cv2.imread(test_image) # B,G,R order | |
peaks = hand_estimation(oriImg) | |
canvas = util.draw_handpose(oriImg, peaks, True) | |
cv2.imshow('', canvas) | |
cv2.waitKey(0) |