Spaces:
Running
on
A10G
Running
on
A10G
import math | |
import numpy as np | |
import matplotlib | |
import cv2 | |
from typing import List, Tuple, Union, Optional | |
from .body import BodyResult, Keypoint | |
eps = 0.01 | |
def smart_resize(x, s): | |
Ht, Wt = s | |
if x.ndim == 2: | |
Ho, Wo = x.shape | |
Co = 1 | |
else: | |
Ho, Wo, Co = x.shape | |
if Co == 3 or Co == 1: | |
k = float(Ht + Wt) / float(Ho + Wo) | |
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) | |
else: | |
return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2) | |
def smart_resize_k(x, fx, fy): | |
if x.ndim == 2: | |
Ho, Wo = x.shape | |
Co = 1 | |
else: | |
Ho, Wo, Co = x.shape | |
Ht, Wt = Ho * fy, Wo * fx | |
if Co == 3 or Co == 1: | |
k = float(Ht + Wt) / float(Ho + Wo) | |
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) | |
else: | |
return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2) | |
def padRightDownCorner(img, stride, padValue): | |
h = img.shape[0] | |
w = img.shape[1] | |
pad = 4 * [None] | |
pad[0] = 0 # up | |
pad[1] = 0 # left | |
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down | |
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right | |
img_padded = img | |
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1)) | |
img_padded = np.concatenate((pad_up, img_padded), axis=0) | |
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1)) | |
img_padded = np.concatenate((pad_left, img_padded), axis=1) | |
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1)) | |
img_padded = np.concatenate((img_padded, pad_down), axis=0) | |
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1)) | |
img_padded = np.concatenate((img_padded, pad_right), axis=1) | |
return img_padded, pad | |
def transfer(model, model_weights): | |
transfered_model_weights = {} | |
for weights_name in model.state_dict().keys(): | |
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])] | |
return transfered_model_weights | |
def is_normalized(keypoints: List[Optional[Keypoint]]) -> bool: | |
point_normalized = [ | |
0 <= abs(k.x) <= 1 and 0 <= abs(k.y) <= 1 | |
for k in keypoints | |
if k is not None | |
] | |
if not point_normalized: | |
return False | |
return all(point_normalized) | |
def draw_bodypose(canvas: np.ndarray, keypoints: List[Keypoint]) -> np.ndarray: | |
""" | |
Draw keypoints and limbs representing body pose on a given canvas. | |
Args: | |
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the body pose. | |
keypoints (List[Keypoint]): A list of Keypoint objects representing the body keypoints to be drawn. | |
Returns: | |
np.ndarray: A 3D numpy array representing the modified canvas with the drawn body pose. | |
Note: | |
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1. | |
""" | |
if not is_normalized(keypoints): | |
H, W = 1.0, 1.0 | |
else: | |
H, W, _ = canvas.shape | |
stickwidth = 4 | |
limbSeq = [ | |
[2, 3], [2, 6], [3, 4], [4, 5], | |
[6, 7], [7, 8], [2, 9], [9, 10], | |
[10, 11], [2, 12], [12, 13], [13, 14], | |
[2, 1], [1, 15], [15, 17], [1, 16], | |
[16, 18], | |
] | |
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ | |
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ | |
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] | |
for (k1_index, k2_index), color in zip(limbSeq, colors): | |
keypoint1 = keypoints[k1_index - 1] | |
keypoint2 = keypoints[k2_index - 1] | |
if keypoint1 is None or keypoint2 is None: | |
continue | |
Y = np.array([keypoint1.x, keypoint2.x]) * float(W) | |
X = np.array([keypoint1.y, keypoint2.y]) * float(H) | |
mX = np.mean(X) | |
mY = np.mean(Y) | |
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 | |
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) | |
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) | |
cv2.fillConvexPoly(canvas, polygon, [int(float(c) * 0.6) for c in color]) | |
for keypoint, color in zip(keypoints, colors): | |
if keypoint is None: | |
continue | |
x, y = keypoint.x, keypoint.y | |
x = int(x * W) | |
y = int(y * H) | |
cv2.circle(canvas, (int(x), int(y)), 4, color, thickness=-1) | |
return canvas | |
def draw_handpose(canvas: np.ndarray, keypoints: Union[List[Keypoint], None]) -> np.ndarray: | |
""" | |
Draw keypoints and connections representing hand pose on a given canvas. | |
Args: | |
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the hand pose. | |
keypoints (List[Keypoint]| None): A list of Keypoint objects representing the hand keypoints to be drawn | |
or None if no keypoints are present. | |
Returns: | |
np.ndarray: A 3D numpy array representing the modified canvas with the drawn hand pose. | |
Note: | |
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1. | |
""" | |
if not keypoints: | |
return canvas | |
if not is_normalized(keypoints): | |
H, W = 1.0, 1.0 | |
else: | |
H, W, _ = canvas.shape | |
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \ | |
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] | |
for ie, (e1, e2) in enumerate(edges): | |
k1 = keypoints[e1] | |
k2 = keypoints[e2] | |
if k1 is None or k2 is None: | |
continue | |
x1 = int(k1.x * W) | |
y1 = int(k1.y * H) | |
x2 = int(k2.x * W) | |
y2 = int(k2.y * H) | |
if x1 > eps and y1 > eps and x2 > eps and y2 > eps: | |
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2) | |
for keypoint in keypoints: | |
if keypoint is None: | |
continue | |
x, y = keypoint.x, keypoint.y | |
x = int(x * W) | |
y = int(y * H) | |
if x > eps and y > eps: | |
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1) | |
return canvas | |
def draw_facepose(canvas: np.ndarray, keypoints: Union[List[Keypoint], None]) -> np.ndarray: | |
""" | |
Draw keypoints representing face pose on a given canvas. | |
Args: | |
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the face pose. | |
keypoints (List[Keypoint]| None): A list of Keypoint objects representing the face keypoints to be drawn | |
or None if no keypoints are present. | |
Returns: | |
np.ndarray: A 3D numpy array representing the modified canvas with the drawn face pose. | |
Note: | |
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1. | |
""" | |
if not keypoints: | |
return canvas | |
if not is_normalized(keypoints): | |
H, W = 1.0, 1.0 | |
else: | |
H, W, _ = canvas.shape | |
for keypoint in keypoints: | |
if keypoint is None: | |
continue | |
x, y = keypoint.x, keypoint.y | |
x = int(x * W) | |
y = int(y * H) | |
if x > eps and y > eps: | |
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1) | |
return canvas | |
# detect hand according to body pose keypoints | |
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp | |
def handDetect(body: BodyResult, oriImg) -> List[Tuple[int, int, int, bool]]: | |
""" | |
Detect hands in the input body pose keypoints and calculate the bounding box for each hand. | |
Args: | |
body (BodyResult): A BodyResult object containing the detected body pose keypoints. | |
oriImg (numpy.ndarray): A 3D numpy array representing the original input image. | |
Returns: | |
List[Tuple[int, int, int, bool]]: A list of tuples, each containing the coordinates (x, y) of the top-left | |
corner of the bounding box, the width (height) of the bounding box, and | |
a boolean flag indicating whether the hand is a left hand (True) or a | |
right hand (False). | |
Notes: | |
- The width and height of the bounding boxes are equal since the network requires squared input. | |
- The minimum bounding box size is 20 pixels. | |
""" | |
ratioWristElbow = 0.33 | |
detect_result = [] | |
image_height, image_width = oriImg.shape[0:2] | |
keypoints = body.keypoints | |
# right hand: wrist 4, elbow 3, shoulder 2 | |
# left hand: wrist 7, elbow 6, shoulder 5 | |
left_shoulder = keypoints[5] | |
left_elbow = keypoints[6] | |
left_wrist = keypoints[7] | |
right_shoulder = keypoints[2] | |
right_elbow = keypoints[3] | |
right_wrist = keypoints[4] | |
# if any of three not detected | |
has_left = all(keypoint is not None for keypoint in (left_shoulder, left_elbow, left_wrist)) | |
has_right = all(keypoint is not None for keypoint in (right_shoulder, right_elbow, right_wrist)) | |
if not (has_left or has_right): | |
return [] | |
hands = [] | |
#left hand | |
if has_left: | |
hands.append([ | |
left_shoulder.x, left_shoulder.y, | |
left_elbow.x, left_elbow.y, | |
left_wrist.x, left_wrist.y, | |
True | |
]) | |
# right hand | |
if has_right: | |
hands.append([ | |
right_shoulder.x, right_shoulder.y, | |
right_elbow.x, right_elbow.y, | |
right_wrist.x, right_wrist.y, | |
False | |
]) | |
for x1, y1, x2, y2, x3, y3, is_left in hands: | |
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox | |
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]); | |
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]); | |
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow); | |
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder); | |
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder); | |
x = x3 + ratioWristElbow * (x3 - x2) | |
y = y3 + ratioWristElbow * (y3 - y2) | |
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2) | |
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) | |
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder) | |
# x-y refers to the center --> offset to topLeft point | |
# handRectangle.x -= handRectangle.width / 2.f; | |
# handRectangle.y -= handRectangle.height / 2.f; | |
x -= width / 2 | |
y -= width / 2 # width = height | |
# overflow the image | |
if x < 0: x = 0 | |
if y < 0: y = 0 | |
width1 = width | |
width2 = width | |
if x + width > image_width: width1 = image_width - x | |
if y + width > image_height: width2 = image_height - y | |
width = min(width1, width2) | |
# the max hand box value is 20 pixels | |
if width >= 20: | |
detect_result.append((int(x), int(y), int(width), is_left)) | |
''' | |
return value: [[x, y, w, True if left hand else False]]. | |
width=height since the network require squared input. | |
x, y is the coordinate of top left | |
''' | |
return detect_result | |
# Written by Lvmin | |
def faceDetect(body: BodyResult, oriImg) -> Union[Tuple[int, int, int], None]: | |
""" | |
Detect the face in the input body pose keypoints and calculate the bounding box for the face. | |
Args: | |
body (BodyResult): A BodyResult object containing the detected body pose keypoints. | |
oriImg (numpy.ndarray): A 3D numpy array representing the original input image. | |
Returns: | |
Tuple[int, int, int] | None: A tuple containing the coordinates (x, y) of the top-left corner of the | |
bounding box and the width (height) of the bounding box, or None if the | |
face is not detected or the bounding box width is less than 20 pixels. | |
Notes: | |
- The width and height of the bounding box are equal. | |
- The minimum bounding box size is 20 pixels. | |
""" | |
# left right eye ear 14 15 16 17 | |
image_height, image_width = oriImg.shape[0:2] | |
keypoints = body.keypoints | |
head = keypoints[0] | |
left_eye = keypoints[14] | |
right_eye = keypoints[15] | |
left_ear = keypoints[16] | |
right_ear = keypoints[17] | |
if head is None or all(keypoint is None for keypoint in (left_eye, right_eye, left_ear, right_ear)): | |
return None | |
width = 0.0 | |
x0, y0 = head.x, head.y | |
if left_eye is not None: | |
x1, y1 = left_eye.x, left_eye.y | |
d = max(abs(x0 - x1), abs(y0 - y1)) | |
width = max(width, d * 3.0) | |
if right_eye is not None: | |
x1, y1 = right_eye.x, right_eye.y | |
d = max(abs(x0 - x1), abs(y0 - y1)) | |
width = max(width, d * 3.0) | |
if left_ear is not None: | |
x1, y1 = left_ear.x, left_ear.y | |
d = max(abs(x0 - x1), abs(y0 - y1)) | |
width = max(width, d * 1.5) | |
if right_ear is not None: | |
x1, y1 = right_ear.x, right_ear.y | |
d = max(abs(x0 - x1), abs(y0 - y1)) | |
width = max(width, d * 1.5) | |
x, y = x0, y0 | |
x -= width | |
y -= width | |
if x < 0: | |
x = 0 | |
if y < 0: | |
y = 0 | |
width1 = width * 2 | |
width2 = width * 2 | |
if x + width > image_width: | |
width1 = image_width - x | |
if y + width > image_height: | |
width2 = image_height - y | |
width = min(width1, width2) | |
if width >= 20: | |
return int(x), int(y), int(width) | |
else: | |
return None | |
# get max index of 2d array | |
def npmax(array): | |
arrayindex = array.argmax(1) | |
arrayvalue = array.max(1) | |
i = arrayvalue.argmax() | |
j = arrayindex[i] | |
return i, j |