Spaces:
Running
on
A10G
Running
on
A10G
import torch | |
def flatten_grid(x, grid_size=[2, 2]): | |
''' | |
x: B x C x H x W | |
''' | |
B, C, H, W = x.size() | |
hs, ws = grid_size | |
img_h = H // hs | |
flattened = torch.cat(torch.split(x, img_h, dim=2), dim=-1) | |
return flattened | |
def unflatten_grid(x, grid_size=[2,2]): | |
''' | |
x: B x C x H x W | |
''' | |
B, C, H, W = x.size() | |
hs, ws = grid_size | |
img_w = W // (ws) | |
unflattened = torch.cat(torch.split(x, img_w, dim=3), dim=-2) | |
return unflattened | |
def prepare_key_grid_latents(latents_video, latent_grid_size=[2,2], key_grid_size=[3,3], rand_indices=None): | |
T = latents_video.size(0) | |
img_h, img_w = latents_video.size(-2) // latent_grid_size[0], latents_video.size(-1) // latent_grid_size[1] | |
list_of_flattens = [flatten_grid(el.unsqueeze(0), latent_grid_size) for el in latents_video] | |
long_flatten = torch.cat(list_of_flattens, dim=-1) | |
keyframe_grid = unflatten_grid(torch.cat([long_flatten[:,:,:,ind*(img_w):(ind+1)*(img_w)] for ind in rand_indices], dim=-1), key_grid_size) | |
return keyframe_grid, rand_indices | |
def pil_grid_to_frames(pil_grid, grid_size=[2,2]): | |
w,h = pil_grid.size | |
img_w = w // grid_size[1] | |
img_h = h // grid_size[0] | |
list_of_pil = [] | |
for i in range(grid_size[0]): | |
for j in range(grid_size[1]): | |
list_of_pil.append(pil_grid.crop((j*img_w, i*img_h, (j+1)*img_w, (i+1)*img_h))) | |
return list_of_pil | |
if __name__ == '__main__': | |
a = torch.randint(0,5,(1,3), dtype=torch.float) | |