Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,769 Bytes
34d43e8 3a3d2d4 34d43e8 70fb10b 34d43e8 3a3d2d4 34d43e8 3a3d2d4 34d43e8 3a3d2d4 34d43e8 3a3d2d4 34d43e8 3a3d2d4 34d43e8 17f513e 34d43e8 b8262b8 70fb10b 5c808ae 425c2b6 5c808ae 34d43e8 d31d26c 4e22d3a 34d43e8 d31d26c 5244b5d 34d43e8 433e8e9 34d43e8 433e8e9 34d43e8 17f513e 0c5dce2 17f513e 34d43e8 17f513e 34d43e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
import numpy as np
import random
import spaces # [uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace to the model you would like to use
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Specific prefixes for the prompt and negative prompt
prompt_prefix = "score_9, score_8_up, score_7_up, source_anime"
negative_prompt_prefix = "score_6, score_5, score_4, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
@spaces.GPU # [uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
full_prompt = f"{prompt_prefix}, {prompt}"
full_negative_prompt = f"{negative_prompt_prefix}, {negative_prompt}"
image = pipe(
prompt=full_prompt,
negative_prompt=full_negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed, full_prompt, full_negative_prompt
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Rainbow Media Anime Generator")
gr.Markdown(' ### <a href="https://huggingface.co/spaces/panelforge/rainbow-media-real-v11" target="_blank" class="button-link">Try a more realistic model</a>') # Update links
result = gr.Image(label="Result", show_label=False)
prompt = gr.Text(
label="Prompt",
lines=3,
placeholder="Enter your prompt",
container=False,
)
negative_prompt = gr.Text(
label="Negative prompt",
lines=3,
placeholder="Enter a negative prompt",
container=False,
)
run_button = gr.Button("Run", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=35, # Replace with defaults that work for your model
)
# Add text outputs to show full prompt and negative prompt
full_prompt_output = gr.Textbox(label="Full Prompt", interactive=False, lines=3)
full_negative_prompt_output = gr.Textbox(label="Full Negative Prompt", interactive=False, lines=3)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed, full_prompt_output, full_negative_prompt_output],
)
if __name__ == "__main__":
demo.launch()
|