Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,882 Bytes
630d1c8 c8b9716 ffa7df2 630d1c8 c8b9716 0f8e37d 630d1c8 0f8e37d ffa7df2 630d1c8 300ebf6 630d1c8 c8b9716 ffa7df2 3e820bd ffa7df2 0ad6bbd ffa7df2 0ad6bbd ffa7df2 0ad6bbd 90d2a01 630d1c8 ffa7df2 0ad6bbd ffa7df2 0ad6bbd ffa7df2 3e820bd 6d482fb 0f8e37d 9ed2bbc ffa7df2 9ed2bbc 795c3c5 9ed2bbc 44f2016 795c3c5 9ed2bbc 795c3c5 9ed2bbc 256b272 9ed2bbc d83e2ce 795c3c5 44f2016 0f8e37d 630d1c8 ffa7df2 795c3c5 412497f 3e820bd c8b9716 7f14a13 c8b9716 44f2016 ffa7df2 c8b9716 795c3c5 ffa7df2 795c3c5 ffa7df2 795c3c5 ffa7df2 795c3c5 ffa7df2 795c3c5 c8b9716 d83e2ce 795c3c5 c8b9716 795c3c5 30f564a c8b9716 795c3c5 656b9ef 795c3c5 44f2016 795c3c5 c8b9716 795c3c5 7819529 02074a8 66d1fcc ffa7df2 02074a8 ce6ba71 7f14a13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import gradio as gr
import numpy as np
import random
import spaces # [uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
from tags import participant_tags, tribe_tags, skin_tone_tags, body_type_tags, tattoo_tags, piercing_tags, expression_tags, eye_tags, hair_style_tags, position_tags, fetish_tags, location_tags, camera_tags, atmosphere_tags
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace with your desired model
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU # [uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
selected_participant_tags, selected_tribe_tags, selected_skin_tone_tags, selected_body_type_tags,
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags,
selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags,
selected_camera_tags, selected_atmosphere_tags, active_tab, progress=gr.Progress(track_tqdm=True)):
if active_tab == "Prompt Input":
# Use the user-provided prompt
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {prompt}'
else:
# Use tags from the "Tag Selection" tab
selected_tags = (
[participant_tags[tag] for tag in selected_participant_tags] +
[tribe_tags[tag] for tag in selected_tribe_tags] +
[skin_tone_tags[tag] for tag in selected_skin_tone_tags] +
[body_type_tags[tag] for tag in selected_body_type_tags] +
[tattoo_tags[tag] for tag in selected_tattoo_tags] +
[piercing_tags[tag] for tag in selected_piercing_tags] +
[expression_tags[tag] for tag in selected_expression_tags] +
[eye_tags[tag] for tag in selected_eye_tags] +
[hair_style_tags[tag] for tag in selected_hair_style_tags] +
[position_tags[tag] for tag in selected_position_tags] +
[fetish_tags[tag] for tag in selected_fetish_tags] +
[location_tags[tag] for tag in selected_location_tags] +
[camera_tags[tag] for tag in selected_camera_tags] +
[atmosphere_tags[tag] for tag in selected_atmosphere_tags]
)
tags_text = ', '.join(selected_tags)
final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}'
# Concatenate user-provided negative prompt with additional restrictions
additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
full_negative_prompt = f"{additional_negatives}, {negative_prompt}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Generate the image with the final prompts
image = pipe(
prompt=final_prompt,
negative_prompt=full_negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
# Return image, seed, and the used prompts
return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}"
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
#left-column {
width: 50%;
display: inline-block;
padding-right: 20px;
padding-left: 20px;
vertical-align: top;
}
#right-column {
width: 50%;
display: inline-block;
vertical-align: top;
padding-left: 20px;
margin-top: 53px;
}
#left-column > * {
margin-bottom: 20px;
}
#run-button {
width: 100%;
margin-top: 10px;
display: block;
}
#prompt-info {
margin-bottom: 20px;
}
#result {
margin-bottom: 20px;
}
.gradio-tabs > .tab-item {
margin-bottom: 20px;
}
#prompt {
margin-bottom: 20px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column(elem_id="left-column"):
gr.Markdown("""# Rainbow Media X""")
# Display result image at the top
result = gr.Image(label="Result", show_label=False, elem_id="result")
# Add a textbox to display the prompts used for generation
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False, elem_id="prompt-info")
# Advanced Settings and Run Button
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=35,
)
# Full-width "Run" button
run_button = gr.Button("Run", elem_id="run-button")
with gr.Column(elem_id="right-column"):
# Removed the Prompt / Tag Input title here
# State to track active tab
active_tab = gr.State("Prompt Input")
# Tabbed interface to select either Prompt or Tags
with gr.Tabs() as tabs:
with gr.TabItem("Prompt Input") as prompt_tab:
prompt = gr.Textbox(
label="Prompt",
show_label=False,
lines=3,
placeholder="Enter your prompt",
container=False,
elem_id="prompt"
)
prompt_tab.select(lambda: "Prompt Input", inputs=None, outputs=active_tab)
with gr.TabItem("Tag Selection") as tag_tab:
# Tag selection checkboxes for each tag group
selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
selected_skin_tone_tags = gr.CheckboxGroup(choices=list(skin_tone_tags.keys()), label="Skin Tone Tags")
selected_body_type_tags = gr.CheckboxGroup(choices=list(body_type_tags.keys()), label="Body Type Tags")
selected_tattoo_tags = gr.CheckboxGroup(choices=list(tattoo_tags.keys()), label="Tattoo Tags")
selected_piercing_tags = gr.CheckboxGroup(choices=list(piercing_tags.keys()), label="Piercing Tags")
selected_expression_tags = gr.CheckboxGroup(choices=list(expression_tags.keys()), label="Expression Tags")
selected_eye_tags = gr.CheckboxGroup(choices=list(eye_tags.keys()), label="Eye Tags")
selected_hair_style_tags = gr.CheckboxGroup(choices=list(hair_style_tags.keys()), label="Hair Style Tags")
selected_position_tags = gr.CheckboxGroup(choices=list(position_tags.keys()), label="Position Tags")
selected_fetish_tags = gr.CheckboxGroup(choices=list(fetish_tags.keys()), label="Fetish Tags")
selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
tag_tab.select(lambda: "Tag Selection", inputs=None, outputs=active_tab)
run_button.click(
infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
selected_participant_tags, selected_tribe_tags, selected_skin_tone_tags, selected_body_type_tags,
selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags,
selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags,
selected_camera_tags, selected_atmosphere_tags, active_tab],
outputs=[result, seed, prompt_info]
)
demo.queue().launch() |