File size: 9,882 Bytes
630d1c8
 
 
c8b9716
 
 
ffa7df2
630d1c8
 
c8b9716
0f8e37d
 
 
 
 
630d1c8
0f8e37d
ffa7df2
630d1c8
 
300ebf6
630d1c8
c8b9716
ffa7df2
 
 
 
 
3e820bd
ffa7df2
0ad6bbd
ffa7df2
 
0ad6bbd
ffa7df2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ad6bbd
90d2a01
 
 
630d1c8
 
ffa7df2
 
 
0ad6bbd
ffa7df2
 
 
 
 
 
 
 
 
 
0ad6bbd
 
ffa7df2
3e820bd
6d482fb
0f8e37d
 
9ed2bbc
ffa7df2
9ed2bbc
795c3c5
 
 
 
9ed2bbc
44f2016
795c3c5
9ed2bbc
795c3c5
 
 
 
9ed2bbc
256b272
9ed2bbc
 
 
 
 
 
 
 
 
d83e2ce
795c3c5
44f2016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f8e37d
630d1c8
 
ffa7df2
795c3c5
 
412497f
3e820bd
c8b9716
7f14a13
c8b9716
 
44f2016
ffa7df2
c8b9716
795c3c5
 
 
ffa7df2
795c3c5
 
ffa7df2
 
795c3c5
 
 
 
ffa7df2
795c3c5
ffa7df2
 
795c3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8b9716
d83e2ce
795c3c5
 
c8b9716
 
795c3c5
30f564a
c8b9716
795c3c5
 
 
 
 
656b9ef
795c3c5
 
44f2016
795c3c5
 
 
 
c8b9716
795c3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7819529
02074a8
 
66d1fcc
ffa7df2
 
 
 
02074a8
 
ce6ba71
7f14a13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import gradio as gr
import numpy as np
import random
import spaces  # [uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
from tags import participant_tags, tribe_tags, skin_tone_tags, body_type_tags, tattoo_tags, piercing_tags, expression_tags, eye_tags, hair_style_tags, position_tags, fetish_tags, location_tags, camera_tags, atmosphere_tags

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl"  # Replace with your desired model

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU  # [uncomment to use ZeroGPU]
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
          selected_participant_tags, selected_tribe_tags, selected_skin_tone_tags, selected_body_type_tags,
          selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags,
          selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags,
          selected_camera_tags, selected_atmosphere_tags, active_tab, progress=gr.Progress(track_tqdm=True)):

    if active_tab == "Prompt Input":
        # Use the user-provided prompt
        final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {prompt}'
    else:
        # Use tags from the "Tag Selection" tab
        selected_tags = (
            [participant_tags[tag] for tag in selected_participant_tags] +
            [tribe_tags[tag] for tag in selected_tribe_tags] +
            [skin_tone_tags[tag] for tag in selected_skin_tone_tags] +
            [body_type_tags[tag] for tag in selected_body_type_tags] +
            [tattoo_tags[tag] for tag in selected_tattoo_tags] +
            [piercing_tags[tag] for tag in selected_piercing_tags] +
            [expression_tags[tag] for tag in selected_expression_tags] +
            [eye_tags[tag] for tag in selected_eye_tags] +
            [hair_style_tags[tag] for tag in selected_hair_style_tags] +
            [position_tags[tag] for tag in selected_position_tags] +
            [fetish_tags[tag] for tag in selected_fetish_tags] +
            [location_tags[tag] for tag in selected_location_tags] +
            [camera_tags[tag] for tag in selected_camera_tags] +
            [atmosphere_tags[tag] for tag in selected_atmosphere_tags]
        )
        tags_text = ', '.join(selected_tags)
        final_prompt = f'score_9, score_8_up, score_7_up, source_anime, {tags_text}'

    # Concatenate user-provided negative prompt with additional restrictions
    additional_negatives = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
    full_negative_prompt = f"{additional_negatives}, {negative_prompt}"

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    # Generate the image with the final prompts
    image = pipe(
        prompt=final_prompt,
        negative_prompt=full_negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]

    # Return image, seed, and the used prompts
    return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}"


css = """
#col-container {
    margin: 0 auto;
    max-width: 1280px;
}

#left-column {
    width: 50%;
    display: inline-block;
    padding-right: 20px;
    padding-left: 20px;
    vertical-align: top;
}

#right-column {
    width: 50%;
    display: inline-block;
    vertical-align: top;
    padding-left: 20px;
    margin-top: 53px;
}

#left-column > * {
    margin-bottom: 20px;
}

#run-button {
    width: 100%;
    margin-top: 10px;
    display: block;
}

#prompt-info {
    margin-bottom: 20px;
}

#result {
    margin-bottom: 20px;
}

.gradio-tabs > .tab-item {
    margin-bottom: 20px;
}

#prompt {
    margin-bottom: 20px;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Row():
        with gr.Column(elem_id="left-column"):
            gr.Markdown("""# Rainbow Media X""")

            # Display result image at the top
            result = gr.Image(label="Result", show_label=False, elem_id="result")

            # Add a textbox to display the prompts used for generation
            prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False, elem_id="prompt-info")

            # Advanced Settings and Run Button
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    max_lines=1,
                    placeholder="Enter a negative prompt",
                    visible=True,
                )

                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )

                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )

                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )

                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=7,
                    )

                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=35,
                    )

            # Full-width "Run" button
            run_button = gr.Button("Run", elem_id="run-button")

        with gr.Column(elem_id="right-column"):
            # Removed the Prompt / Tag Input title here
            # State to track active tab
            active_tab = gr.State("Prompt Input")

            # Tabbed interface to select either Prompt or Tags
            with gr.Tabs() as tabs:
                with gr.TabItem("Prompt Input") as prompt_tab:
                    prompt = gr.Textbox(
                        label="Prompt",
                        show_label=False,
                        lines=3,
                        placeholder="Enter your prompt",
                        container=False,
                        elem_id="prompt"
                    )
                    prompt_tab.select(lambda: "Prompt Input", inputs=None, outputs=active_tab)

                with gr.TabItem("Tag Selection") as tag_tab:
                    # Tag selection checkboxes for each tag group
                    selected_participant_tags = gr.CheckboxGroup(choices=list(participant_tags.keys()), label="Participant Tags")
                    selected_tribe_tags = gr.CheckboxGroup(choices=list(tribe_tags.keys()), label="Tribe Tags")
                    selected_skin_tone_tags = gr.CheckboxGroup(choices=list(skin_tone_tags.keys()), label="Skin Tone Tags")
                    selected_body_type_tags = gr.CheckboxGroup(choices=list(body_type_tags.keys()), label="Body Type Tags")
                    selected_tattoo_tags = gr.CheckboxGroup(choices=list(tattoo_tags.keys()), label="Tattoo Tags")
                    selected_piercing_tags = gr.CheckboxGroup(choices=list(piercing_tags.keys()), label="Piercing Tags")
                    selected_expression_tags = gr.CheckboxGroup(choices=list(expression_tags.keys()), label="Expression Tags")
                    selected_eye_tags = gr.CheckboxGroup(choices=list(eye_tags.keys()), label="Eye Tags")
                    selected_hair_style_tags = gr.CheckboxGroup(choices=list(hair_style_tags.keys()), label="Hair Style Tags")
                    selected_position_tags = gr.CheckboxGroup(choices=list(position_tags.keys()), label="Position Tags")
                    selected_fetish_tags = gr.CheckboxGroup(choices=list(fetish_tags.keys()), label="Fetish Tags")
                    selected_location_tags = gr.CheckboxGroup(choices=list(location_tags.keys()), label="Location Tags")
                    selected_camera_tags = gr.CheckboxGroup(choices=list(camera_tags.keys()), label="Camera Tags")
                    selected_atmosphere_tags = gr.CheckboxGroup(choices=list(atmosphere_tags.keys()), label="Atmosphere Tags")
                    tag_tab.select(lambda: "Tag Selection", inputs=None, outputs=active_tab)

        run_button.click(
            infer,
            inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
                    selected_participant_tags, selected_tribe_tags, selected_skin_tone_tags, selected_body_type_tags,
                    selected_tattoo_tags, selected_piercing_tags, selected_expression_tags, selected_eye_tags,
                    selected_hair_style_tags, selected_position_tags, selected_fetish_tags, selected_location_tags,
                    selected_camera_tags, selected_atmosphere_tags, active_tab],
            outputs=[result, seed, prompt_info]
        )

demo.queue().launch()