papew28 commited on
Commit
43ff49f
·
verified ·
1 Parent(s): b3f295b

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -47
app.py DELETED
@@ -1,47 +0,0 @@
1
- import streamlit as st
2
-
3
- def main():
4
- st.title("Classification de séquence")
5
-
6
- title = st.text_input("Titre")
7
- post = st.text_area("Post")
8
- comment = st.text_area("Commentaire")
9
-
10
- # Bouton Tester
11
- if st.button("Tester"):
12
- result = classify(title, post, comment)
13
- st.success(result)
14
-
15
- def classify(title,post,comment):
16
-
17
- from transformers import DistilBertTokenizer,AutoModelForSequenceClassification
18
- import torch
19
- state_dict=torch.load(f"./ipcbert")
20
- tokenizer=RobertaBertTokenizer.from_pretrained("distil-base-uncased")
21
- model = AutoModelForSequenceClassification.from_pretrained('distil-bert-uncased',
22
- problem_type="multi_label_classification",
23
- num_labels=3
24
- )
25
- model.load_state_dict(state_dict)
26
- device = torch.device("cpu")
27
- model.to(device)
28
-
29
- model.eval()
30
- inputs = tokenizer("title of the post: "+title+"\n"+"post: "+post+"\n"+"comment: "+commentaire, return_tensors="pt", padding=True, truncation=True, max_length=512)
31
- input_ids = inputs['input_ids'].to(device)
32
- attention_mask = inputs['attention_mask'].to(device)
33
-
34
- with torch.no_grad():
35
- outputs = model(input_ids, attention_mask=attention_mask)
36
- logits = outputs.logits
37
- _, preds = torch.max(logits, dim=1)
38
- id2label={
39
- 0:"neutral",
40
- 1:"with palestine",
41
- 2:"with israel"
42
- }
43
- return id2label[preds.item()]
44
-
45
- if __name__ == "__main__":
46
- main()
47
-