papew28 commited on
Commit
e610f8f
·
verified ·
1 Parent(s): b3236c7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
2
  from transformers import RobertaTokenizer,AutoModelForSequenceClassification
3
  import torch
4
 
5
- state_dict=torch.load("fine_tuned_roberta.bin",map_location=torch.device("cpu"))
6
  tokenizer=RobertaTokenizer.from_pretrained("roberta-base")
7
  model = AutoModelForSequenceClassification.from_pretrained('roberta-base',
8
  problem_type="multi_label_classification",
@@ -26,7 +26,7 @@ def main():
26
  @st.cache_data
27
  def get_predictions(title, post, commentaire):
28
  model.eval()
29
- inputs = tokenizer("title of the post: " + title + "\n" + "post: " + post + "\n" + "comment: " + commentaire, return_tensors="pt", padding=True, truncation=True, max_length=512)
30
  input_ids = inputs['input_ids'].to(device)
31
  attention_mask = inputs['attention_mask'].to(device)
32
  with torch.no_grad():
 
2
  from transformers import RobertaTokenizer,AutoModelForSequenceClassification
3
  import torch
4
 
5
+ state_dict=torch.load("fine_tuned_roberta_comments.bin",map_location=torch.device("cpu"))
6
  tokenizer=RobertaTokenizer.from_pretrained("roberta-base")
7
  model = AutoModelForSequenceClassification.from_pretrained('roberta-base',
8
  problem_type="multi_label_classification",
 
26
  @st.cache_data
27
  def get_predictions(title, post, commentaire):
28
  model.eval()
29
+ inputs = tokenizer("comment: " + commentaire, return_tensors="pt", padding=True, truncation=True, max_length=512)
30
  input_ids = inputs['input_ids'].to(device)
31
  attention_mask = inputs['attention_mask'].to(device)
32
  with torch.no_grad():