Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import streamlit as st
|
|
2 |
from transformers import RobertaTokenizer,AutoModelForSequenceClassification
|
3 |
import torch
|
4 |
|
5 |
-
state_dict=torch.load("
|
6 |
tokenizer=RobertaTokenizer.from_pretrained("roberta-base")
|
7 |
model = AutoModelForSequenceClassification.from_pretrained('roberta-base',
|
8 |
problem_type="multi_label_classification",
|
@@ -26,7 +26,7 @@ def main():
|
|
26 |
@st.cache_data
|
27 |
def get_predictions(title, post, commentaire):
|
28 |
model.eval()
|
29 |
-
inputs = tokenizer("
|
30 |
input_ids = inputs['input_ids'].to(device)
|
31 |
attention_mask = inputs['attention_mask'].to(device)
|
32 |
with torch.no_grad():
|
|
|
2 |
from transformers import RobertaTokenizer,AutoModelForSequenceClassification
|
3 |
import torch
|
4 |
|
5 |
+
state_dict=torch.load("fine_tuned_roberta_comments.bin",map_location=torch.device("cpu"))
|
6 |
tokenizer=RobertaTokenizer.from_pretrained("roberta-base")
|
7 |
model = AutoModelForSequenceClassification.from_pretrained('roberta-base',
|
8 |
problem_type="multi_label_classification",
|
|
|
26 |
@st.cache_data
|
27 |
def get_predictions(title, post, commentaire):
|
28 |
model.eval()
|
29 |
+
inputs = tokenizer("comment: " + commentaire, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
30 |
input_ids = inputs['input_ids'].to(device)
|
31 |
attention_mask = inputs['attention_mask'].to(device)
|
32 |
with torch.no_grad():
|