Spaces:
Runtime error
Runtime error
File size: 6,954 Bytes
e94f64d 11a9900 0711b9e 11a9900 e94f64d 0711b9e e94f64d 11a9900 e94f64d 11a9900 e94f64d 11a9900 4ea4bee e94f64d 11a9900 e94f64d d27799d e94f64d 11a9900 4ea4bee 11a9900 4ea4bee 11a9900 0711b9e 11a9900 e94f64d 11a9900 e94f64d 11a9900 e94f64d 11a9900 44c0faa e94f64d 11a9900 d27799d 11a9900 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import torch
from PIL import Image
import time
import psutil
import random
# from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
start_time = time.time()
current_steps = 15
pipe = DiffusionPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
if torch.cuda.is_available():
pipe = pipe.to("cuda")
def error_str(error, title="Error"):
return (
f"""#### {title}
{error}"""
if error
else ""
)
def inference(
prompt,
text_guidance_scale,
image_guidance_scale,
image,
steps,
neg_prompt="",
width=512,
height=512,
seed=0,
):
print(psutil.virtual_memory()) # print memory usage
if seed == 0:
seed = random.randint(0, 2147483647)
generator = torch.Generator("cuda").manual_seed(seed)
try:
ratio = min(height / image.height, width / image.width)
image = image.resize((int(image.width * ratio), int(image.height * ratio)), Image.LANCZOS)
result = pipe(
prompt,
negative_prompt=neg_prompt,
image=image,
num_inference_steps=int(steps),
image_guidance_scale=image_guidance_scale,
guidance_scale=text_guidance_scale,
generator=generator,
)
# return replace_nsfw_images(result)
return result.images, f"Done. Seed: {seed}"
except Exception as e:
return None, error_str(e)
def replace_nsfw_images(results):
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images
with gr.Blocks(css="style.css") as demo:
gr.HTML(
f"""
<div class="finetuned-diffusion-div">
<div>
<h1>Instruct-Pix2Pix Diffusion</h1>
</div>
<p>
Demo for Instruct-Pix2Pix Diffusion
</p>
<p>
Running on <b>{device}</b>
</p>
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
<a style="display:inline-block" href="https://huggingface.co/spaces/patrickvonplaten/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
with gr.Box(visible=False) as custom_model_group:
gr.HTML(
"<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>"
)
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter prompt.",
).style(container=False)
generate = gr.Button(value="Generate").style(
rounded=(False, True, True, False)
)
# image_out = gr.Image(height=512)
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(
container=False
)
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(
label="Negative prompt",
placeholder="What to exclude from the image",
)
n_images = gr.Slider(
label="Images", value=1, minimum=1, maximum=4, step=1
)
with gr.Row():
steps = gr.Slider(
label="Steps",
value=current_steps,
minimum=2,
maximum=75,
step=1,
)
with gr.Row():
width = gr.Slider(
label="Width", value=512, minimum=64, maximum=1024, step=8
)
height = gr.Slider(
label="Height", value=512, minimum=64, maximum=1024, step=8
)
seed = gr.Slider(
0, 2147483647, label="Seed (0 = random)", value=0, step=1
)
with gr.Group():
image = gr.Image(
label="Image", height=256, tool="editor", type="pil"
)
text_guidance_scale = gr.Slider(
label="Text Guidance Scale", minimum=1.0, value=5.5, maximum=15, step=0.1
)
image_guidance_scale = gr.Slider(
label="Image Guidance Scale",
minimum=1.0,
maximum=15,
step=0.1,
value=1.5,
)
inputs = [
prompt,
text_guidance_scale,
image_guidance_scale,
image,
steps,
neg_prompt,
width,
height,
seed,
]
outputs = [gallery, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
ex = gr.Examples(
[
["turn him into a cyborg", 7.5, 1.2, "./statue.jpg", 20]
],
inputs=[prompt, text_guidance_scale, image_guidance_scale, image, steps],
outputs=outputs,
fn=inference,
cache_examples=True,
)
print(f"Space built in {time.time() - start_time:.2f} seconds")
demo.queue(concurrency_count=1)
demo.launch()
|