File size: 6,954 Bytes
e94f64d
11a9900
 
 
 
 
 
0711b9e
11a9900
 
 
e94f64d
0711b9e
e94f64d
 
11a9900
 
 
e94f64d
 
 
11a9900
 
 
 
 
 
 
 
 
 
 
 
e94f64d
 
 
11a9900
 
4ea4bee
 
e94f64d
11a9900
 
 
 
 
 
 
 
 
e94f64d
 
 
 
 
 
 
 
 
 
 
d27799d
e94f64d
 
 
11a9900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ea4bee
11a9900
 
4ea4bee
11a9900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0711b9e
 
 
 
 
 
 
 
11a9900
 
 
 
 
 
 
 
e94f64d
 
 
 
 
 
 
 
 
11a9900
 
 
 
e94f64d
 
 
11a9900
e94f64d
11a9900
 
 
 
 
 
 
 
 
44c0faa
 
 
e94f64d
11a9900
 
d27799d
11a9900
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import torch
from PIL import Image
import time
import psutil
import random
# from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker


start_time = time.time()
current_steps = 15

pipe = DiffusionPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"

if torch.cuda.is_available():
    pipe = pipe.to("cuda")


def error_str(error, title="Error"):
    return (
        f"""#### {title}
            {error}"""
        if error
        else ""
    )


def inference(
    prompt,
    text_guidance_scale,
    image_guidance_scale,
    image,
    steps,
    neg_prompt="",
    width=512,
    height=512,
    seed=0,
):
    print(psutil.virtual_memory())  # print memory usage

    if seed == 0:
        seed = random.randint(0, 2147483647)

    generator = torch.Generator("cuda").manual_seed(seed)

    try:
        ratio = min(height / image.height, width / image.width)
        image = image.resize((int(image.width * ratio), int(image.height * ratio)), Image.LANCZOS)

        result = pipe(
            prompt,
            negative_prompt=neg_prompt,
            image=image,
            num_inference_steps=int(steps),
            image_guidance_scale=image_guidance_scale,
            guidance_scale=text_guidance_scale,
            generator=generator,
        )

        # return replace_nsfw_images(result)
        return result.images, f"Done. Seed: {seed}"
    except Exception as e:
        return None, error_str(e)


def replace_nsfw_images(results):
    for i in range(len(results.images)):
        if results.nsfw_content_detected[i]:
            results.images[i] = Image.open("nsfw.png")
    return results.images


with gr.Blocks(css="style.css") as demo:
    gr.HTML(
        f"""
            <div class="finetuned-diffusion-div">
              <div>
                <h1>Instruct-Pix2Pix Diffusion</h1>
              </div>
              <p>
               Demo for Instruct-Pix2Pix Diffusion
              </p>
              <p>
               Running on <b>{device}</b>
              </p>
              <p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
              <a style="display:inline-block" href="https://huggingface.co/spaces/patrickvonplaten/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
            </div>
        """
    )
    with gr.Row():
        with gr.Column(scale=55):
            with gr.Group():
                with gr.Box(visible=False) as custom_model_group:
                    gr.HTML(
                        "<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>"
                    )

                with gr.Row():
                    prompt = gr.Textbox(
                        label="Prompt",
                        show_label=False,
                        max_lines=2,
                        placeholder="Enter prompt.",
                    ).style(container=False)
                    generate = gr.Button(value="Generate").style(
                        rounded=(False, True, True, False)
                    )

                # image_out = gr.Image(height=512)
                gallery = gr.Gallery(
                    label="Generated images", show_label=False, elem_id="gallery"
                ).style(grid=[2], height="auto")

            state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(
                container=False
            )
            error_output = gr.Markdown()

        with gr.Column(scale=45):
            with gr.Tab("Options"):
                with gr.Group():
                    neg_prompt = gr.Textbox(
                        label="Negative prompt",
                        placeholder="What to exclude from the image",
                    )

                    n_images = gr.Slider(
                        label="Images", value=1, minimum=1, maximum=4, step=1
                    )

                    with gr.Row():
                        steps = gr.Slider(
                            label="Steps",
                            value=current_steps,
                            minimum=2,
                            maximum=75,
                            step=1,
                        )

                    with gr.Row():
                        width = gr.Slider(
                            label="Width", value=512, minimum=64, maximum=1024, step=8
                        )
                        height = gr.Slider(
                            label="Height", value=512, minimum=64, maximum=1024, step=8
                        )

                    seed = gr.Slider(
                        0, 2147483647, label="Seed (0 = random)", value=0, step=1
                    )

                with gr.Group():
                    image = gr.Image(
                        label="Image", height=256, tool="editor", type="pil"
                    )
                    text_guidance_scale = gr.Slider(
                        label="Text Guidance Scale", minimum=1.0, value=5.5, maximum=15, step=0.1
                    )
                    image_guidance_scale = gr.Slider(
                        label="Image Guidance Scale",
                        minimum=1.0,
                        maximum=15,
                        step=0.1,
                        value=1.5,
                    )

    inputs = [
        prompt,
        text_guidance_scale,
        image_guidance_scale,
        image,
        steps,
        neg_prompt,
        width,
        height,
        seed,
    ]
    outputs = [gallery, error_output]
    prompt.submit(inference, inputs=inputs, outputs=outputs)
    generate.click(inference, inputs=inputs, outputs=outputs)

    ex = gr.Examples(
        [
            ["turn him into a cyborg", 7.5, 1.2, "./statue.jpg", 20]
        ],
        inputs=[prompt, text_guidance_scale, image_guidance_scale, image, steps],
        outputs=outputs,
        fn=inference,
        cache_examples=True,
    )

print(f"Space built in {time.time() - start_time:.2f} seconds")

demo.queue(concurrency_count=1)
demo.launch()