Spaces:
Runtime error
Runtime error
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import time | |
import psutil | |
import random | |
# from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
start_time = time.time() | |
current_steps = 15 | |
pipe = DiffusionPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
def error_str(error, title="Error"): | |
return ( | |
f"""#### {title} | |
{error}""" | |
if error | |
else "" | |
) | |
def inference( | |
prompt, | |
text_guidance_scale, | |
image_guidance_scale, | |
image, | |
steps, | |
neg_prompt="", | |
width=512, | |
height=512, | |
seed=0, | |
): | |
print(psutil.virtual_memory()) # print memory usage | |
if seed == 0: | |
seed = random.randint(0, 2147483647) | |
generator = torch.Generator("cuda").manual_seed(seed) | |
try: | |
ratio = min(height / image.height, width / image.width) | |
image = image.resize((int(image.width * ratio), int(image.height * ratio)), Image.LANCZOS) | |
result = pipe( | |
prompt, | |
negative_prompt=neg_prompt, | |
image=image, | |
num_inference_steps=int(steps), | |
image_guidance_scale=image_guidance_scale, | |
guidance_scale=text_guidance_scale, | |
generator=generator, | |
) | |
# return replace_nsfw_images(result) | |
return result.images, f"Done. Seed: {seed}" | |
except Exception as e: | |
return None, error_str(e) | |
def replace_nsfw_images(results): | |
for i in range(len(results.images)): | |
if results.nsfw_content_detected[i]: | |
results.images[i] = Image.open("nsfw.png") | |
return results.images | |
with gr.Blocks(css="style.css") as demo: | |
gr.HTML( | |
f""" | |
<div class="finetuned-diffusion-div"> | |
<div> | |
<h1>Instruct-Pix2Pix Diffusion</h1> | |
</div> | |
<p> | |
Demo for Instruct-Pix2Pix Diffusion: https://github.com/timothybrooks/instruct-pix2pix | |
</p> | |
<p> | |
Running on <b>{device}</b> | |
</p> | |
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br> | |
<a style="display:inline-block" href="https://huggingface.co/spaces/patrickvonplaten/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=55): | |
with gr.Group(): | |
with gr.Box(visible=False) as custom_model_group: | |
gr.HTML( | |
"<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>" | |
) | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
show_label=False, | |
max_lines=2, | |
placeholder="Enter prompt.", | |
).style(container=False) | |
generate = gr.Button(value="Generate").style( | |
rounded=(False, True, True, False) | |
) | |
# image_out = gr.Image(height=512) | |
gallery = gr.Gallery( | |
label="Generated images", show_label=False, elem_id="gallery" | |
).style(grid=[2], height="auto") | |
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style( | |
container=False | |
) | |
error_output = gr.Markdown() | |
with gr.Column(scale=45): | |
with gr.Tab("Options"): | |
with gr.Group(): | |
neg_prompt = gr.Textbox( | |
label="Negative prompt", | |
placeholder="What to exclude from the image", | |
) | |
n_images = gr.Slider( | |
label="Images", value=1, minimum=1, maximum=4, step=1 | |
) | |
with gr.Row(): | |
steps = gr.Slider( | |
label="Steps", | |
value=current_steps, | |
minimum=2, | |
maximum=75, | |
step=1, | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", value=512, minimum=64, maximum=1024, step=8 | |
) | |
height = gr.Slider( | |
label="Height", value=512, minimum=64, maximum=1024, step=8 | |
) | |
seed = gr.Slider( | |
0, 2147483647, label="Seed (0 = random)", value=0, step=1 | |
) | |
with gr.Group(): | |
image = gr.Image( | |
label="Image", height=256, tool="editor", type="pil" | |
) | |
text_guidance_scale = gr.Slider( | |
label="Text Guidance Scale", minimum=1.0, value=5.5, maximum=15, step=0.1 | |
) | |
image_guidance_scale = gr.Slider( | |
label="Image Guidance Scale", | |
minimum=1.0, | |
maximum=15, | |
step=0.1, | |
value=1.5, | |
) | |
inputs = [ | |
prompt, | |
text_guidance_scale, | |
image_guidance_scale, | |
image, | |
steps, | |
neg_prompt, | |
width, | |
height, | |
seed, | |
] | |
outputs = [gallery, error_output] | |
prompt.submit(inference, inputs=inputs, outputs=outputs) | |
generate.click(inference, inputs=inputs, outputs=outputs) | |
ex = gr.Examples( | |
[ | |
["turn him into a cyborg", 7.5, 1.2, "./statue.jpg", 20] | |
], | |
inputs=[prompt, text_guidance_scale, image_guidance_scale, image, steps], | |
outputs=outputs, | |
fn=inference, | |
cache_examples=True, | |
) | |
print(f"Space built in {time.time() - start_time:.2f} seconds") | |
demo.queue(concurrency_count=1) | |
demo.launch() | |