File size: 6,650 Bytes
727cf89
b1c9207
727cf89
 
b1c9207
727cf89
 
 
b1c9207
 
 
727cf89
b1c9207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727cf89
b1c9207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727cf89
b1c9207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727cf89
b1c9207
 
727cf89
b1c9207
 
 
727cf89
 
 
b1c9207
727cf89
 
 
b1c9207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727cf89
b1c9207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727cf89
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from smolagents.tools import Tool
import json
import pronouncing
import string
import difflib

class WordPhoneTool(Tool):
    name = "word_phonetic_analyzer"
    description = """Analyzes word pronunciation using CMU dictionary to get phonemes, syllables, and stress patterns. 

    Can also compare two words for phonetic similarity."""
    inputs = {'word': {'type': 'string', 'description': 'Primary word to analyze for pronunciation patterns'}, 'compare_to': {'type': 'string', 'description': 'Optional word to compare against for similarity scoring', 'nullable': True}}
    output_type = "string"
    VOWEL_REF = "AH,UH,AX|AE,EH|IY,IH|AO,AA|UW,UH|AY,EY|OW,AO|AW,AO|OY,OW|ER,AXR"

    def _get_vowel_groups(self):
        groups = []
        group_strs = self.VOWEL_REF.split("|")
        for group_str in group_strs:
            groups.append(group_str.split(","))
        return groups


    def _get_last_syllable(self, phones):
        last_vowel_idx = -1
        last_vowel = None
        vowel_groups = self._get_vowel_groups()
    
        for i in range(len(phones)):
            phone = phones[i]
            base_phone = ""
            for j in range(len(phone)):
                if phone[j] not in "012":
                    base_phone += phone[j]
        
            for group in vowel_groups:
                if base_phone in group:
                    last_vowel_idx = i
                    last_vowel = base_phone
                    break
    
        if last_vowel_idx == -1:
            return None, []
        
        remaining = []
        for i in range(last_vowel_idx + 1, len(phones)):
            remaining.append(phones[i])
        
        return last_vowel, remaining


    def _strip_stress(self, phones):
        result = []
        for phone in phones:
            stripped = ""
            for char in phone:
                if char not in "012":
                    stripped += char
            result.append(stripped)
        return result


    def _vowels_match(self, v1, v2):
        v1_stripped = ""
        v2_stripped = ""
    
        for char in v1:
            if char not in "012":
                v1_stripped += char
            
        for char in v2:
            if char not in "012":
                v2_stripped += char
    
        if v1_stripped == v2_stripped:
            return True
        
        vowel_groups = self._get_vowel_groups()
        for group in vowel_groups:
            if v1_stripped in group and v2_stripped in group:
                return True
        return False


    def _calculate_similarity(self, word1, phones1, word2, phones2):
        import pronouncing
        from difflib import SequenceMatcher
    
        phone_list1 = phones1.split()
        phone_list2 = phones2.split()
    
        result1 = self._get_last_syllable(phone_list1)
        result2 = self._get_last_syllable(phone_list2)
    
        last_vowel1 = result1[0]
        word1_end = result1[1]
        last_vowel2 = result2[0]
        word2_end = result2[1]
    
        rhyme_score = 0.0
        syllable_score = 0.0
        string_similarity = 0.0
    
        if last_vowel1 and last_vowel2:
            if self._vowels_match(last_vowel1, last_vowel2):
                word1_end_clean = self._strip_stress(word1_end)
                word2_end_clean = self._strip_stress(word2_end)
            
                if word1_end_clean == word2_end_clean:
                    rhyme_score = 1.0
                    if len(word1) == len(word2):
                        if word1[1:] == word2[1:]:
                            rhyme_score = 1.2
                else:
                    rhyme_score = 0.6
    
        syl1 = pronouncing.syllable_count(phones1)
        syl2 = pronouncing.syllable_count(phones2)
        if syl1 == syl2:
            syllable_score = 1.0
    
        matcher = SequenceMatcher(None)
        if len(word1) > 1 and len(word2) > 1:
            matcher.set_seqs(word1[1:], word2[1:])
            string_similarity = matcher.ratio()
        else:
            matcher.set_seqs(word1, word2)
            string_similarity = matcher.ratio()
    
        total_similarity = (rhyme_score * 0.6) + (syllable_score * 0.25) + (string_similarity * 0.15)
    
        return {
            "similarity": round(total_similarity, 3),
            "rhyme_score": round(rhyme_score, 3),
            "syllable_match": syllable_score == 1.0,
            "string_similarity": round(string_similarity, 3)
        }


    def forward(self, word, compare_to=None):
        import json
        import string
        import pronouncing
    
        word_clean = word.lower()
        word_clean = word_clean.strip(string.punctuation)
        phones = pronouncing.phones_for_word(word_clean)
    
        if not phones:
            result = {
                'word': word_clean, 
                'found': False,
                'error': 'Word not found in dictionary'
            }
            return json.dumps(result, indent=2)
    
        primary_phones = phones[0]
        result = {
            'word': word_clean,
            'found': True,
            'syllable_count': pronouncing.syllable_count(primary_phones),
            'phones': primary_phones.split(),
            'stresses': pronouncing.stresses(primary_phones)
        }
    
        if compare_to:
            compare_clean = compare_to.lower()
            compare_clean = compare_clean.strip(string.punctuation)
            compare_phones = pronouncing.phones_for_word(compare_clean)
        
            if not compare_phones:
                result['comparison'] = {
                    'error': f'Comparison word "{compare_clean}" not found in dictionary'
                }
            else:
                compare_primary = compare_phones[0]
                result['comparison'] = {
                    'word': compare_clean,
                    'syllable_count': pronouncing.syllable_count(compare_primary),
                    'phones': compare_primary.split(),
                    'stresses': pronouncing.stresses(compare_primary)
                }
            
                similarity_result = self._calculate_similarity(
                    word_clean, primary_phones,
                    compare_clean, compare_primary
                )
                result['similarity'] = similarity_result
    
        return json.dumps(result, indent=2)


    def __init__(self, *args, **kwargs):
        self.is_initialized = False