Spaces:
Runtime error
Runtime error
towards PPSurf model, checking UI
Browse files
app.py
CHANGED
@@ -4,91 +4,136 @@ from __future__ import annotations
|
|
4 |
|
5 |
import os
|
6 |
import datetime
|
|
|
7 |
|
8 |
import gradio as gr
|
9 |
import spaces
|
10 |
|
11 |
|
12 |
@spaces.GPU(duration=60 * 3)
|
13 |
-
def run_on_gpu(input_shape
|
14 |
-
print('
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
print('Finished inference at {}'.format(datetime.datetime.now()))
|
19 |
-
return list(res_generator)
|
20 |
|
|
|
21 |
|
22 |
|
23 |
def main():
|
24 |
-
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
|
30 |
-
|
31 |
f'you may duplicate the space and upgrade to GPU in settings. '
|
32 |
f'<a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true">'
|
33 |
f'<img style="display: inline; margin-top: 0em; margin-bottom: 0em" '
|
34 |
f'src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>')
|
35 |
|
36 |
with gr.Blocks(css='style.css') as demo:
|
37 |
-
gr.Markdown(
|
38 |
with gr.Row():
|
39 |
with gr.Column():
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
with gr.Column():
|
54 |
progress_text = gr.Text(label='Progress')
|
55 |
with gr.Tabs():
|
56 |
-
with gr.TabItem(label='
|
57 |
-
viewpoint_images = gr.Gallery(show_label=False, columns=4)
|
58 |
-
with gr.TabItem(label='Result 3D model'):
|
59 |
result_3d_model = gr.Model3D(show_label=False)
|
60 |
with gr.TabItem(label='Output mesh file'):
|
61 |
output_file = gr.File(show_label=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
with gr.Row():
|
63 |
-
|
64 |
-
['shapes/dragon1.obj', 'a photo of a dragon', 0, 7.5],
|
65 |
-
['shapes/dragon2.obj', 'a photo of a dragon', 0, 7.5],
|
66 |
-
['shapes/eagle.obj', 'a photo of an eagle', 0, 7.5],
|
67 |
-
['shapes/napoleon.obj', 'a photo of Napoleon Bonaparte', 3, 7.5],
|
68 |
-
['shapes/nascar.obj', 'A next gen nascar', 2, 10],
|
69 |
-
]
|
70 |
-
gr.Examples(examples=examples,
|
71 |
-
inputs=[
|
72 |
-
input_shape,
|
73 |
-
text,
|
74 |
-
seed,
|
75 |
-
guidance_scale,
|
76 |
-
],
|
77 |
-
outputs=[
|
78 |
-
result_3d_model,
|
79 |
-
output_file,
|
80 |
-
],
|
81 |
-
cache_examples=False)
|
82 |
|
83 |
run_button.click(fn=run_on_gpu,
|
84 |
inputs=[
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
89 |
],
|
90 |
outputs=[
|
91 |
-
viewpoint_images,
|
92 |
result_3d_model,
|
93 |
output_file,
|
94 |
progress_text,
|
|
|
4 |
|
5 |
import os
|
6 |
import datetime
|
7 |
+
import subprocess
|
8 |
|
9 |
import gradio as gr
|
10 |
import spaces
|
11 |
|
12 |
|
13 |
@spaces.GPU(duration=60 * 3)
|
14 |
+
def run_on_gpu(input_shape):
|
15 |
+
print('Started inference at {}'.format(datetime.datetime.now()))
|
16 |
+
call_base = ['python', 'ppsurf/pps.py', 'rec']
|
17 |
+
call_args = ['pps.py',
|
18 |
+
'rec',
|
19 |
+
'data/{}'.format(input_shape),
|
20 |
+
'results/rec/{}'.format(input_shape),
|
21 |
+
]
|
22 |
+
res = subprocess.check_output(call_base + call_args)
|
23 |
print('Finished inference at {}'.format(datetime.datetime.now()))
|
|
|
24 |
|
25 |
+
return res
|
26 |
|
27 |
|
28 |
def main():
|
29 |
+
description = '''# [PPSurf](https://github.com/cg-tuwien/ppsurf)
|
30 |
|
31 |
+
Supported file formats: PLY, STL, OBJ and other mesh files, XYZ as whitespace-separated text file,
|
32 |
+
NPY and NPZ (key='arr_0'), LAS and LAZ (version 1.0-1.4), COPC and CRS.
|
33 |
+
Best results for 50k-250k points.
|
34 |
+
|
35 |
+
This method is meant for scans of single and few objects.
|
36 |
+
Quality for scenes and landscapes will be lower.
|
37 |
+
|
38 |
+
Inference takes about 2 minutes.
|
39 |
'''
|
40 |
+
|
41 |
+
def convert_to_ply(input_point_cloud_upload: gr.File):
|
42 |
+
print('inputs:', input_point_cloud_upload.value)
|
43 |
+
input_shape = input_point_cloud_upload.value[0]
|
44 |
+
if not input_shape.endswith('.ply'):
|
45 |
+
# load file
|
46 |
+
from ppsurf.source.occupancy_data_module import OccupancyDataModule
|
47 |
+
pts_np = OccupancyDataModule.load_pts(input_shape)
|
48 |
+
|
49 |
+
# convert to ply
|
50 |
+
import trimesh
|
51 |
+
mesh = trimesh.Trimesh(vertices=pts_np[:, :3])
|
52 |
+
input_shape = input_shape + '.ply'
|
53 |
+
mesh.export(input_shape)
|
54 |
+
|
55 |
+
# show in viewer
|
56 |
+
input_tabs.selected = 'pc_viewer'
|
57 |
+
input_point_cloud_viewer.value = input_shape
|
58 |
+
|
59 |
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
|
60 |
+
description += (f'\n<p>For faster inference without waiting in queue, '
|
61 |
f'you may duplicate the space and upgrade to GPU in settings. '
|
62 |
f'<a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true">'
|
63 |
f'<img style="display: inline; margin-top: 0em; margin-bottom: 0em" '
|
64 |
f'src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>')
|
65 |
|
66 |
with gr.Blocks(css='style.css') as demo:
|
67 |
+
gr.Markdown(description)
|
68 |
with gr.Row():
|
69 |
with gr.Column():
|
70 |
+
with gr.Tabs() as input_tabs:
|
71 |
+
with gr.TabItem(label='Input Point Cloud Upload', id='pc_upload'):
|
72 |
+
input_point_cloud_upload = gr.File(
|
73 |
+
show_label=False, file_count='single')
|
74 |
+
input_point_cloud_upload.upload(fn=convert_to_ply,
|
75 |
+
inputs=[
|
76 |
+
input_point_cloud_upload,
|
77 |
+
],
|
78 |
+
outputs=[
|
79 |
+
# input_point_cloud_viewer, # not available here
|
80 |
+
])
|
81 |
+
# input_point_cloud_upload.attach_load_event(convert_to_ply, every=None)
|
82 |
+
with gr.TabItem(label='Input Point Cloud Viewer', id='pc_viewer'):
|
83 |
+
input_point_cloud_viewer = gr.Model3D(show_label=False)
|
84 |
+
gen_resolution_global = gr.Slider(
|
85 |
+
label='Grid Resolution (larger for more details)',
|
86 |
+
minimum=17, maximum=513, value=129, step=2)
|
87 |
+
padding_factor = gr.Slider(
|
88 |
+
label='Padding Factor (larger if object is cut off at boundaries)',
|
89 |
+
minimum=0, maximum=1.0, value=0.05, step=1)
|
90 |
+
gen_subsample_manifold_iter = gr.Slider(
|
91 |
+
label='Subsample Manifold Iterations (larger for larger point clouds)',
|
92 |
+
minimum=3, maximum=30, value=10, step=1)
|
93 |
+
gen_refine_iter = gr.Slider(
|
94 |
+
label='Edge Refinement Iterations (larger for more details)',
|
95 |
+
minimum=3, maximum=30, value=10, step=1)
|
96 |
+
# run_button = gr.Button('Run')
|
97 |
with gr.Column():
|
98 |
progress_text = gr.Text(label='Progress')
|
99 |
with gr.Tabs():
|
100 |
+
with gr.TabItem(label='Reconstructed 3D model'):
|
|
|
|
|
101 |
result_3d_model = gr.Model3D(show_label=False)
|
102 |
with gr.TabItem(label='Output mesh file'):
|
103 |
output_file = gr.File(show_label=False)
|
104 |
+
# with gr.Row():
|
105 |
+
# examples = [
|
106 |
+
# ['shapes/dragon1.obj', 'a photo of a dragon', 0, 7.5],
|
107 |
+
# ['shapes/dragon2.obj', 'a photo of a dragon', 0, 7.5],
|
108 |
+
# ['shapes/eagle.obj', 'a photo of an eagle', 0, 7.5],
|
109 |
+
# ['shapes/napoleon.obj', 'a photo of Napoleon Bonaparte', 3, 7.5],
|
110 |
+
# ['shapes/nascar.obj', 'A next gen nascar', 2, 10],
|
111 |
+
# ]
|
112 |
+
# gr.Examples(examples=examples,
|
113 |
+
# inputs=[
|
114 |
+
# input_point_cloud_viewer,
|
115 |
+
# text,
|
116 |
+
# seed,
|
117 |
+
# guidance_scale,
|
118 |
+
# ],
|
119 |
+
# outputs=[
|
120 |
+
# result_3d_model,
|
121 |
+
# output_file,
|
122 |
+
# ],
|
123 |
+
# cache_examples=False)
|
124 |
+
|
125 |
with gr.Row():
|
126 |
+
run_button = gr.Button('=> Run PPSurf =>')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
run_button.click(fn=run_on_gpu,
|
129 |
inputs=[
|
130 |
+
input_point_cloud_viewer,
|
131 |
+
gen_resolution_global,
|
132 |
+
padding_factor,
|
133 |
+
gen_subsample_manifold_iter,
|
134 |
+
gen_refine_iter,
|
135 |
],
|
136 |
outputs=[
|
|
|
137 |
result_3d_model,
|
138 |
output_file,
|
139 |
progress_text,
|
model.py
DELETED
@@ -1,93 +0,0 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
-
import datetime
|
4 |
-
import pathlib
|
5 |
-
import shlex
|
6 |
-
import subprocess
|
7 |
-
import sys
|
8 |
-
from typing import Generator, Optional
|
9 |
-
|
10 |
-
import gradio as gr
|
11 |
-
import trimesh
|
12 |
-
|
13 |
-
sys.path.append('TEXTurePaper')
|
14 |
-
|
15 |
-
from src.configs.train_config import GuideConfig, LogConfig, TrainConfig
|
16 |
-
from src.training.trainer import TEXTure
|
17 |
-
|
18 |
-
|
19 |
-
class Model:
|
20 |
-
def __init__(self):
|
21 |
-
self.max_num_faces = 100000
|
22 |
-
|
23 |
-
def load_config(self, shape_path: str, text: str, seed: int,
|
24 |
-
guidance_scale: float) -> TrainConfig:
|
25 |
-
text += ', {} view'
|
26 |
-
|
27 |
-
log = LogConfig(exp_name=self.gen_exp_name())
|
28 |
-
guide = GuideConfig(text=text)
|
29 |
-
guide.background_img = 'TEXTurePaper/textures/brick_wall.png'
|
30 |
-
guide.shape_path = 'TEXTurePaper/shapes/spot_triangulated.obj'
|
31 |
-
config = TrainConfig(log=log, guide=guide)
|
32 |
-
|
33 |
-
config.guide.shape_path = shape_path
|
34 |
-
config.optim.seed = seed
|
35 |
-
config.guide.guidance_scale = guidance_scale
|
36 |
-
return config
|
37 |
-
|
38 |
-
def gen_exp_name(self) -> str:
|
39 |
-
now = datetime.datetime.now()
|
40 |
-
return now.strftime('%Y-%m-%d-%H-%M-%S')
|
41 |
-
|
42 |
-
def check_num_faces(self, path: str) -> bool:
|
43 |
-
with open(path) as f:
|
44 |
-
lines = [line for line in f.readlines() if line.startswith('f')]
|
45 |
-
return len(lines) <= self.max_num_faces
|
46 |
-
|
47 |
-
def zip_results(self, exp_dir: pathlib.Path) -> str:
|
48 |
-
mesh_dir = exp_dir / 'mesh'
|
49 |
-
out_path = f'{exp_dir.name}.zip'
|
50 |
-
subprocess.run(shlex.split(f'zip -r {out_path} {mesh_dir}'))
|
51 |
-
return out_path
|
52 |
-
|
53 |
-
def run(
|
54 |
-
self, shape_path: str, text: str, seed: int, guidance_scale: float
|
55 |
-
) -> Generator[tuple[list[str], Optional[str], Optional[str], str], None, None]:
|
56 |
-
if not shape_path.endswith('.obj'):
|
57 |
-
raise gr.Error('The input file is not .obj file.')
|
58 |
-
if not self.check_num_faces(shape_path):
|
59 |
-
raise gr.Error('The number of faces is over 100,000.')
|
60 |
-
|
61 |
-
config = self.load_config(shape_path, text, seed, guidance_scale)
|
62 |
-
trainer = TEXTure(config)
|
63 |
-
|
64 |
-
trainer.mesh_model.train()
|
65 |
-
|
66 |
-
total_steps = len(trainer.dataloaders['train'])
|
67 |
-
for step, data in enumerate(trainer.dataloaders['train'], start=1):
|
68 |
-
trainer.paint_step += 1
|
69 |
-
trainer.paint_viewpoint(data)
|
70 |
-
trainer.evaluate(trainer.dataloaders['val'],
|
71 |
-
trainer.eval_renders_path)
|
72 |
-
trainer.mesh_model.train()
|
73 |
-
|
74 |
-
sample_image_dir = config.log.exp_dir / 'vis' / 'eval'
|
75 |
-
sample_image_paths = sorted(
|
76 |
-
sample_image_dir.glob(f'step_{trainer.paint_step:05d}_*.jpg'))
|
77 |
-
sample_image_paths = [
|
78 |
-
path.as_posix() for path in sample_image_paths
|
79 |
-
]
|
80 |
-
yield sample_image_paths, None, None, f'{step}/{total_steps}'
|
81 |
-
|
82 |
-
trainer.mesh_model.change_default_to_median()
|
83 |
-
|
84 |
-
save_dir = trainer.exp_path / 'mesh'
|
85 |
-
save_dir.mkdir(exist_ok=True, parents=True)
|
86 |
-
trainer.mesh_model.export_mesh(save_dir)
|
87 |
-
model_path = save_dir / 'mesh.obj'
|
88 |
-
mesh = trimesh.load(model_path)
|
89 |
-
mesh_path = save_dir / 'mesh.glb'
|
90 |
-
mesh.export(mesh_path, file_type='glb')
|
91 |
-
|
92 |
-
zip_path = self.zip_results(config.log.exp_dir)
|
93 |
-
yield sample_image_paths, mesh_path.as_posix(), zip_path, 'Done!'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|