perler commited on
Commit
c40e23d
·
1 Parent(s): 130bb48

minor improvements, allow more freedom for gradio and spaces versions

Browse files
Files changed (2) hide show
  1. app.py +29 -46
  2. requirements.txt +2 -2
app.py CHANGED
@@ -28,13 +28,12 @@ def run_on_gpu(input_point_cloud: gr.utils.NamedString,
28
 
29
  in_file = '{}'.format(input_point_cloud.name)
30
 
31
- # append 'rec' to the input file name
32
- # splitext_result = os.path.splitext(in_file)
33
  rand_hash = uuid.uuid4().hex
34
  out_dir = '/tmp/outputs/{}'.format(rand_hash)
35
  out_file_basename = os.path.basename(in_file) + '.ply'
36
  out_file = os.path.join(out_dir, os.path.basename(in_file), out_file_basename)
37
  os.makedirs(out_dir, exist_ok=True)
 
38
  model_path = 'models/ppsurf_50nn/version_0/checkpoints/last.ckpt'
39
 
40
  args = [
@@ -57,20 +56,17 @@ def run_on_gpu(input_point_cloud: gr.utils.NamedString,
57
  try:
58
  subprocess.run(['python', 'ppsurf/pps.py'] + args[1:]) # need subprocess to spawn workers
59
  except Exception as e:
60
- print('Error:', e) # print to console
61
- gr.Warning("Reconstruction failed, see console log for details.") # notify user
62
 
63
  print('Finished inference at {}'.format(datetime.datetime.now()))
64
-
65
  result_3d_model = out_file
66
-
67
  return result_3d_model
68
 
69
 
70
  def main():
71
- description_header = '# PPSurf [Github](https://github.com/cg-tuwien/ppsurf) [Project](https://www.cg.tuwien.ac.at/research/publications/2024/erler_2024_ppsurf/)'
72
 
73
- description_col0 = '''
74
  Supported file formats:
75
  - PLY, STL, OBJ and other mesh files,
76
  - XYZ as whitespace-separated text file,
@@ -79,7 +75,7 @@ def main():
79
  Best results for 50k-250k points.
80
  '''
81
 
82
- description_col1 = '''
83
  This method is meant for scans of single and few objects.
84
  Quality for scenes and landscapes will be lower.
85
 
@@ -128,23 +124,30 @@ def main():
128
  f'src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>')
129
 
130
  with gr.Blocks(css='style.css') as demo:
 
131
  gr.Markdown(description_header)
132
  with gr.Row():
133
  with gr.Column():
134
  gr.Markdown(description_col0)
 
 
 
 
 
 
 
135
  # with gr.Tabs() as input_tabs: # re-enable when Gradio supports point clouds
136
  # with gr.TabItem(label='Input Point Cloud Upload', id='pc_upload'):
137
- input_point_cloud_upload = gr.File(show_label=False, file_count='single')
138
- # input_point_cloud_upload.upload(
139
- # fn=convert_to_ply,
140
- # inputs=[
141
- # input_point_cloud_upload,
142
- # ],
143
- # outputs=[
144
- # # input_point_cloud_viewer, # not available here
145
- # ])
146
- # with gr.TabItem(label='Input Point Cloud Viewer', id='pc_viewer'):
147
- # input_point_cloud_viewer = gr.Model3D(show_label=False)
148
  gen_resolution_global = gr.Slider(
149
  label='Grid Resolution (larger for more details)',
150
  minimum=17, maximum=513, value=129, step=2)
@@ -158,33 +161,13 @@ def main():
158
  label='Edge Refinement Iterations (larger for more details)',
159
  minimum=3, maximum=30, value=10, step=1)
160
  with gr.Column():
161
- gr.Markdown(description_col1)
162
  # progress_text = gr.Text(label='Progress')
163
- with gr.Tabs():
164
- with gr.TabItem(label='Reconstructed 3D model'):
165
- result_3d_model = gr.Model3D(show_label=False)
166
- # with gr.TabItem(label='Output mesh file'):
167
- # output_file = gr.File(show_label=False)
168
- # with gr.Row():
169
- # examples = [
170
- # ['shapes/dragon1.obj', 'a photo of a dragon', 0, 7.5],
171
- # ['shapes/dragon2.obj', 'a photo of a dragon', 0, 7.5],
172
- # ['shapes/eagle.obj', 'a photo of an eagle', 0, 7.5],
173
- # ['shapes/napoleon.obj', 'a photo of Napoleon Bonaparte', 3, 7.5],
174
- # ['shapes/nascar.obj', 'A next gen nascar', 2, 10],
175
- # ]
176
- # gr.Examples(examples=examples,
177
- # inputs=[
178
- # input_point_cloud_viewer,
179
- # text,
180
- # seed,
181
- # guidance_scale,
182
- # ],
183
- # outputs=[
184
- # result_3d_model,
185
- # output_file,
186
- # ],
187
- # cache_examples=False)
188
 
189
  with gr.Row():
190
  run_button = gr.Button('Reconstruct with PPSurf')
 
28
 
29
  in_file = '{}'.format(input_point_cloud.name)
30
 
 
 
31
  rand_hash = uuid.uuid4().hex
32
  out_dir = '/tmp/outputs/{}'.format(rand_hash)
33
  out_file_basename = os.path.basename(in_file) + '.ply'
34
  out_file = os.path.join(out_dir, os.path.basename(in_file), out_file_basename)
35
  os.makedirs(out_dir, exist_ok=True)
36
+
37
  model_path = 'models/ppsurf_50nn/version_0/checkpoints/last.ckpt'
38
 
39
  args = [
 
56
  try:
57
  subprocess.run(['python', 'ppsurf/pps.py'] + args[1:]) # need subprocess to spawn workers
58
  except Exception as e:
59
+ gr.Warning("Reconstruction failed:\n{}".format(e))
 
60
 
61
  print('Finished inference at {}'.format(datetime.datetime.now()))
 
62
  result_3d_model = out_file
 
63
  return result_3d_model
64
 
65
 
66
  def main():
67
+ description_header = '# PPSurf: Combining Patches and Point Convolutions for Detailed Surface Reconstruction'
68
 
69
+ description_col0 = '''## [Github](https://github.com/cg-tuwien/ppsurf)
70
  Supported file formats:
71
  - PLY, STL, OBJ and other mesh files,
72
  - XYZ as whitespace-separated text file,
 
75
  Best results for 50k-250k points.
76
  '''
77
 
78
+ description_col1 = '''## [Project Info](https://www.cg.tuwien.ac.at/research/publications/2024/erler_2024_ppsurf/)
79
  This method is meant for scans of single and few objects.
80
  Quality for scenes and landscapes will be lower.
81
 
 
124
  f'src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>')
125
 
126
  with gr.Blocks(css='style.css') as demo:
127
+ # descriptions
128
  gr.Markdown(description_header)
129
  with gr.Row():
130
  with gr.Column():
131
  gr.Markdown(description_col0)
132
+ with gr.Column():
133
+ gr.Markdown(description_col1)
134
+
135
+ # inputs and outputs
136
+ with gr.Row():
137
+ with gr.Column():
138
+ input_point_cloud_upload = gr.File(show_label=False, file_count='single')
139
  # with gr.Tabs() as input_tabs: # re-enable when Gradio supports point clouds
140
  # with gr.TabItem(label='Input Point Cloud Upload', id='pc_upload'):
141
+ # input_point_cloud_upload.upload(
142
+ # fn=convert_to_ply,
143
+ # inputs=[
144
+ # input_point_cloud_upload,
145
+ # ],
146
+ # outputs=[
147
+ # # input_point_cloud_viewer, # not available here
148
+ # ])
149
+ # with gr.TabItem(label='Input Point Cloud Viewer', id='pc_viewer'):
150
+ # input_point_cloud_viewer = gr.Model3D(show_label=False)
 
151
  gen_resolution_global = gr.Slider(
152
  label='Grid Resolution (larger for more details)',
153
  minimum=17, maximum=513, value=129, step=2)
 
161
  label='Edge Refinement Iterations (larger for more details)',
162
  minimum=3, maximum=30, value=10, step=1)
163
  with gr.Column():
164
+ result_3d_model = gr.Model3D(label='Reconstructed 3D model')
165
  # progress_text = gr.Text(label='Progress')
166
+ # with gr.Tabs():
167
+ # with gr.TabItem(label='Reconstructed 3D model'):
168
+ # result_3d_model = gr.Model3D(show_label=False)
169
+ # with gr.TabItem(label='Output mesh file'):
170
+ # output_file = gr.File(show_label=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
 
172
  with gr.Row():
173
  run_button = gr.Button('Reconstruct with PPSurf')
requirements.txt CHANGED
@@ -19,5 +19,5 @@ trimesh>=3.23.5
19
  pysdf>=0.1.9
20
  jsonargparse[signatures]>=4.27.5
21
 
22
- spaces>=0.23.2
23
- gradio>=4.19.1
 
19
  pysdf>=0.1.9
20
  jsonargparse[signatures]>=4.27.5
21
 
22
+ spaces>=0.23
23
+ gradio>=4.19