Spaces:
Runtime error
Runtime error
philipp-zettl
commited on
Upload 2 files
Browse files- optimization.py +66 -0
- text.py +130 -0
optimization.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import Counter
|
2 |
+
from itertools import chain
|
3 |
+
import math
|
4 |
+
import torch
|
5 |
+
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
6 |
+
|
7 |
+
|
8 |
+
def ngrams(sequence, n):
|
9 |
+
return [tuple(sequence[i:i+n]) for i in range(len(sequence)-n+1)]
|
10 |
+
|
11 |
+
def count_ngrams(sequence, max_n):
|
12 |
+
counts = Counter()
|
13 |
+
for n in range(1, max_n + 1):
|
14 |
+
counts.update(ngrams(sequence, n))
|
15 |
+
return counts
|
16 |
+
|
17 |
+
def self_bleu(outputs):
|
18 |
+
smoothing_function = SmoothingFunction().method1
|
19 |
+
scores = []
|
20 |
+
for i in range(len(outputs)):
|
21 |
+
references = outputs[:i] + outputs[i+1:]
|
22 |
+
# Avoid calculating BLEU score for empty references
|
23 |
+
if references:
|
24 |
+
scores.append(sentence_bleu(references, outputs[i], smoothing_function=smoothing_function))
|
25 |
+
# If all references are empty, return a default value
|
26 |
+
if not scores:
|
27 |
+
return 0
|
28 |
+
return sum(scores) / len(scores)
|
29 |
+
|
30 |
+
def dist_n(outputs, n):
|
31 |
+
all_ngrams = list(chain(*[ngrams(output, n) for output in outputs]))
|
32 |
+
unique_ngrams = set(all_ngrams)
|
33 |
+
return len(unique_ngrams) / len(all_ngrams) if all_ngrams else 0
|
34 |
+
|
35 |
+
def perplexity(model, tokenizer, texts):
|
36 |
+
encodings = tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
|
37 |
+
max_length = model.config.n_positions
|
38 |
+
stride = 512
|
39 |
+
lls = []
|
40 |
+
for i in range(0, encodings.input_ids.size(1), stride):
|
41 |
+
begin_loc = max(i + stride - max_length, 0)
|
42 |
+
end_loc = i + stride
|
43 |
+
trg_len = end_loc - i
|
44 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(model.device)
|
45 |
+
target_ids = input_ids.clone()
|
46 |
+
target_ids[:, :-trg_len] = -100
|
47 |
+
|
48 |
+
with torch.no_grad():
|
49 |
+
outputs = model(input_ids, labels=target_ids)
|
50 |
+
log_likelihood = outputs.loss * trg_len
|
51 |
+
lls.append(log_likelihood)
|
52 |
+
|
53 |
+
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
|
54 |
+
return ppl.item()
|
55 |
+
|
56 |
+
def js_divergence(p, q):
|
57 |
+
def kl_divergence(p, q):
|
58 |
+
return sum(p[i] * math.log(p[i] / q[i]) for i in range(len(p)) if p[i] != 0 and q[i] != 0)
|
59 |
+
|
60 |
+
p_norm = [float(i)/sum(p) for i in p]
|
61 |
+
q_norm = [float(i)/sum(q) for i in q]
|
62 |
+
|
63 |
+
m = [(p_norm[i] + q_norm[i]) / 2 for i in range(len(p_norm))]
|
64 |
+
|
65 |
+
return (kl_divergence(p_norm, m) + kl_divergence(q_norm, m)) / 2
|
66 |
+
|
text.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from markdownify import markdownify as md
|
2 |
+
from bs4 import BeautifulSoup as BS
|
3 |
+
from IPython.display import display, Markdown
|
4 |
+
from urllib.parse import urljoin
|
5 |
+
from newspaper import Article
|
6 |
+
import re
|
7 |
+
import markdown
|
8 |
+
|
9 |
+
|
10 |
+
def clean(s):
|
11 |
+
s = s.replace("\t", "\\t")
|
12 |
+
s = s.replace("\n", "\\n")
|
13 |
+
return s
|
14 |
+
|
15 |
+
class DocTree:
|
16 |
+
def __init__(self, content):
|
17 |
+
self.content = content
|
18 |
+
self.max_depth = 6
|
19 |
+
|
20 |
+
def get_sections(self, *location_ids):
|
21 |
+
out = self.content
|
22 |
+
for id_ in location_ids:
|
23 |
+
out = out[id_]
|
24 |
+
return out
|
25 |
+
|
26 |
+
def merge_sections(self, elems):
|
27 |
+
if not isinstance(elems[0], list):
|
28 |
+
return '\n\n '.join(elems)
|
29 |
+
out = []
|
30 |
+
for e in elems:
|
31 |
+
out.append(self.merge_sections(e))
|
32 |
+
return '\n\n '.join(map(clean, out))
|
33 |
+
|
34 |
+
def get_merged_sections(self, *location_ids):
|
35 |
+
return [self.merge_sections(s) for s in self.get_sections(*location_ids)]
|
36 |
+
|
37 |
+
def as_markdown(self, content):
|
38 |
+
return md(content)
|
39 |
+
|
40 |
+
def get_sections_by_depth(self, depth):
|
41 |
+
return self._get_sections_by_depth(self.content, depth)
|
42 |
+
|
43 |
+
@staticmethod
|
44 |
+
def _get_sections_by_depth(content, depth):
|
45 |
+
"""Returns a list of merged sections at a specific depth"""
|
46 |
+
if depth == 0:
|
47 |
+
return content
|
48 |
+
out = []
|
49 |
+
for elem in content:
|
50 |
+
out += DocTree._get_sections_by_depth(elem, depth - 1)
|
51 |
+
return out
|
52 |
+
|
53 |
+
|
54 |
+
def fix_relative_links(url, article_content):
|
55 |
+
if 'http' in url:
|
56 |
+
base_url = '/'.join(url.split('/')[:3])
|
57 |
+
else:
|
58 |
+
base_url = url.split('/')
|
59 |
+
pat = re.compile(r'\[(.*?)\]\((.*?)\)', flags=re.IGNORECASE)
|
60 |
+
res = pat.findall(article_content)
|
61 |
+
if res:
|
62 |
+
for g in res:
|
63 |
+
url = urljoin(base_url, g[1]) if g[1].startswith('/') else g[1]
|
64 |
+
article_content = article_content.replace(f'[{g[0]}]({g[1]})', f'[{g[0]}]({url})')
|
65 |
+
else:print('not found')
|
66 |
+
return article_content
|
67 |
+
|
68 |
+
|
69 |
+
def extract_article(url):
|
70 |
+
article = Article(url)
|
71 |
+
article.download()
|
72 |
+
article.parse()
|
73 |
+
return article
|
74 |
+
|
75 |
+
|
76 |
+
def select_content(html_code, elem_class, class_name):
|
77 |
+
print(f'Calling select_content with {elem_class}, {class_name}')
|
78 |
+
if class_name.startswith('.'):
|
79 |
+
class_name = class_name[1:]
|
80 |
+
elem_id = None
|
81 |
+
elif class_name.startswith('#'):
|
82 |
+
elem_id = class_name[1:]
|
83 |
+
class_name = None
|
84 |
+
else:
|
85 |
+
elem_id = None
|
86 |
+
class_name = None
|
87 |
+
return md(str(BS(html_code, features="lxml").find(elem_class, class_=class_name, id=elem_id)))
|
88 |
+
|
89 |
+
|
90 |
+
def split_by_heading(html_content, _i):
|
91 |
+
if _i >= 7:
|
92 |
+
return html_content
|
93 |
+
elems = []
|
94 |
+
for idx, elem in enumerate([i for i in html_content.split(f'<h{_i}') if i]):
|
95 |
+
if idx > 0 or elem.startswith('>'):
|
96 |
+
elem = f'<h{_i}{elem}'
|
97 |
+
elems.append(split_by_heading(elem, _i+1))
|
98 |
+
return elems
|
99 |
+
|
100 |
+
def doctree_from_url(url, elem_class='div', class_name='article-body'):
|
101 |
+
article = extract_article(url)
|
102 |
+
# convert to MD to handle splitting better
|
103 |
+
article_content = select_content(article.html, elem_class, class_name)
|
104 |
+
article_content = (f"# {article.title}\n\n" + article_content).replace('\n\n', '\n').replace('#', '%%@@%%')
|
105 |
+
# fix relative website links
|
106 |
+
article_content = fix_relative_links(url, article_content)
|
107 |
+
# convert back to HTML
|
108 |
+
html_content = markdown.markdown(article_content).replace('%%@@%%', '#')
|
109 |
+
doc_tree = DocTree(split_by_heading(html_content, 1))
|
110 |
+
|
111 |
+
#assert doc_tree.merge_sections(doc_tree.get_sections(0)).replace('\n', '').replace(html_content.replace('\n', ''), '') == '', 'Document inconsistent. Manual adjustments required.'
|
112 |
+
return doc_tree
|
113 |
+
|
114 |
+
|
115 |
+
def get_selectors_for_class(url, elem_class):
|
116 |
+
article = extract_article(url)
|
117 |
+
|
118 |
+
html_content = article.html
|
119 |
+
soup = BS(html_content, features="lxml")
|
120 |
+
classes = set()
|
121 |
+
ids = set()
|
122 |
+
for elem in soup.find_all(elem_class):
|
123 |
+
if elem.get('class'):
|
124 |
+
for c in elem.get('class'):
|
125 |
+
classes |= {f".{c}"}
|
126 |
+
if elem.get('id'):
|
127 |
+
for c in elem.get('id'):
|
128 |
+
ids |= {f"#{c}"}
|
129 |
+
|
130 |
+
return ids | classes
|