Spaces:
Sleeping
Sleeping
import logging | |
import numpy as np | |
from tqdm import tqdm | |
import torch | |
from torch import nn | |
import copy | |
from torch import optim | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
from models.base import BaseLearner | |
from utils.inc_net import AdaptiveNet | |
from utils.toolkit import count_parameters, target2onehot, tensor2numpy | |
num_workers=8 | |
EPSILON = 1e-8 | |
batch_size = 32 | |
class MEMO(BaseLearner): | |
def __init__(self, args): | |
super().__init__(args) | |
self.args = args | |
self._old_base = None | |
self._network = AdaptiveNet(args, True) | |
logging.info(f'>>> train generalized blocks:{self.args["train_base"]} train_adaptive:{self.args["train_adaptive"]}') | |
def after_task(self): | |
self._known_classes = self._total_classes | |
if self._cur_task == 0: | |
if self.args['train_base']: | |
logging.info("Train Generalized Blocks...") | |
self._network.TaskAgnosticExtractor.train() | |
for param in self._network.TaskAgnosticExtractor.parameters(): | |
param.requires_grad = True | |
else: | |
logging.info("Fix Generalized Blocks...") | |
self._network.TaskAgnosticExtractor.eval() | |
for param in self._network.TaskAgnosticExtractor.parameters(): | |
param.requires_grad = False | |
logging.info('Exemplar size: {}'.format(self.exemplar_size)) | |
def incremental_train(self, data_manager): | |
self._cur_task += 1 | |
self._total_classes = self._known_classes + data_manager.get_task_size(self._cur_task) | |
self._network.update_fc(self._total_classes) | |
logging.info('Learning on {}-{}'.format(self._known_classes, self._total_classes)) | |
if self._cur_task>0: | |
for i in range(self._cur_task): | |
for p in self._network.AdaptiveExtractors[i].parameters(): | |
if self.args['train_adaptive'] and i == self._cur_task: | |
p.requires_grad = True | |
else: | |
p.requires_grad = False | |
logging.info('All params: {}'.format(count_parameters(self._network))) | |
logging.info('Trainable params: {}'.format(count_parameters(self._network, True))) | |
train_dataset = data_manager.get_dataset( | |
np.arange(self._known_classes, self._total_classes), | |
source='train', | |
mode='train', | |
appendent=self._get_memory() | |
) | |
self.train_loader = DataLoader( | |
train_dataset, | |
batch_size=self.args["batch_size"], | |
shuffle=True, | |
num_workers=num_workers | |
) | |
test_dataset = data_manager.get_dataset( | |
np.arange(0, self._total_classes), | |
source='test', | |
mode='test' | |
) | |
self.test_loader = DataLoader( | |
test_dataset, | |
batch_size=self.args["batch_size"], | |
shuffle=False, | |
num_workers=num_workers | |
) | |
if len(self._multiple_gpus) > 1: | |
self._network = nn.DataParallel(self._network, self._multiple_gpus) | |
self._train(self.train_loader, self.test_loader) | |
self.build_rehearsal_memory(data_manager, self.samples_per_class) | |
if len(self._multiple_gpus) > 1: | |
self._network = self._network.module | |
def set_network(self): | |
if len(self._multiple_gpus) > 1: | |
self._network = self._network.module | |
self._network.train() #All status from eval to train | |
if self.args['train_base']: | |
self._network.TaskAgnosticExtractor.train() | |
else: | |
self._network.TaskAgnosticExtractor.eval() | |
# set adaptive extractor's status | |
self._network.AdaptiveExtractors[-1].train() | |
if self._cur_task >= 1: | |
for i in range(self._cur_task): | |
if self.args['train_adaptive']: | |
self._network.AdaptiveExtractors[i].train() | |
else: | |
self._network.AdaptiveExtractors[i].eval() | |
if len(self._multiple_gpus) > 1: | |
self._network = nn.DataParallel(self._network, self._multiple_gpus) | |
def _train(self, train_loader, test_loader): | |
self._network.to(self._device) | |
if self._cur_task==0: | |
optimizer = optim.SGD( | |
filter(lambda p: p.requires_grad, self._network.parameters()), | |
momentum=0.9, | |
lr=self.args["init_lr"], | |
weight_decay=self.args["init_weight_decay"] | |
) | |
if self.args['scheduler'] == 'steplr': | |
scheduler = optim.lr_scheduler.MultiStepLR( | |
optimizer=optimizer, | |
milestones=self.args['init_milestones'], | |
gamma=self.args['init_lr_decay'] | |
) | |
elif self.args['scheduler'] == 'cosine': | |
scheduler = optim.lr_scheduler.CosineAnnealingLR( | |
optimizer=optimizer, | |
T_max=self.args['init_epoch'] | |
) | |
else: | |
raise NotImplementedError | |
if not self.args['skip']: | |
self._init_train(train_loader, test_loader, optimizer, scheduler) | |
else: | |
if isinstance(self._network, nn.DataParallel): | |
self._network = self._network.module | |
load_acc = self._network.load_checkpoint(self.args) | |
self._network.to(self._device) | |
if len(self._multiple_gpus) > 1: | |
self._network = nn.DataParallel(self._network, self._multiple_gpus) | |
cur_test_acc = self._compute_accuracy(self._network, self.test_loader) | |
logging.info(f"Loaded_Test_Acc:{load_acc} Cur_Test_Acc:{cur_test_acc}") | |
else: | |
optimizer = optim.SGD( | |
filter(lambda p: p.requires_grad, self._network.parameters()), | |
lr=self.args['lrate'], | |
momentum=0.9, | |
weight_decay=self.args['weight_decay'] | |
) | |
if self.args['scheduler'] == 'steplr': | |
scheduler = optim.lr_scheduler.MultiStepLR( | |
optimizer=optimizer, | |
milestones=self.args['milestones'], | |
gamma=self.args['lrate_decay'] | |
) | |
elif self.args['scheduler'] == 'cosine': | |
assert self.args['t_max'] is not None | |
scheduler = optim.lr_scheduler.CosineAnnealingLR( | |
optimizer=optimizer, | |
T_max=self.args['t_max'] | |
) | |
else: | |
raise NotImplementedError | |
self._update_representation(train_loader, test_loader, optimizer, scheduler) | |
if len(self._multiple_gpus) > 1: | |
self._network.module.weight_align(self._total_classes-self._known_classes) | |
else: | |
self._network.weight_align(self._total_classes-self._known_classes) | |
def _init_train(self,train_loader,test_loader,optimizer,scheduler): | |
prog_bar = tqdm(range(self.args["init_epoch"])) | |
for _, epoch in enumerate(prog_bar): | |
self._network.train() | |
losses = 0. | |
correct, total = 0, 0 | |
for i, (_, inputs, targets) in enumerate(train_loader): | |
inputs, targets = inputs.to(self._device), targets.to(self._device) | |
logits = self._network(inputs)['logits'] | |
loss=F.cross_entropy(logits,targets) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
losses += loss.item() | |
_, preds = torch.max(logits, dim=1) | |
correct += preds.eq(targets.expand_as(preds)).cpu().sum() | |
total += len(targets) | |
scheduler.step() | |
train_acc = np.around(tensor2numpy(correct)*100 / total, decimals=2) | |
if epoch%5==0: | |
test_acc = self._compute_accuracy(self._network, test_loader) | |
info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}'.format( | |
self._cur_task, epoch+1, self.args['init_epoch'], losses/len(train_loader), train_acc, test_acc) | |
else: | |
info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}'.format( | |
self._cur_task, epoch+1, self.args['init_epoch'], losses/len(train_loader), train_acc) | |
# prog_bar.set_description(info) | |
logging.info(info) | |
def _update_representation(self, train_loader, test_loader, optimizer, scheduler): | |
prog_bar = tqdm(range(self.args["epochs"])) | |
for _, epoch in enumerate(prog_bar): | |
self.set_network() | |
losses = 0. | |
losses_clf=0. | |
losses_aux=0. | |
correct, total = 0, 0 | |
for i, (_, inputs, targets) in enumerate(train_loader): | |
inputs, targets = inputs.to(self._device), targets.to(self._device) | |
outputs= self._network(inputs) | |
logits,aux_logits=outputs["logits"],outputs["aux_logits"] | |
loss_clf=F.cross_entropy(logits,targets) | |
aux_targets = targets.clone() | |
aux_targets=torch.where(aux_targets-self._known_classes+1.0>0, aux_targets-self._known_classes+1.0,torch.Tensor([.0]).to(self.args["device"][0])) | |
loss_aux=F.cross_entropy(aux_logits,aux_targets.long()) | |
loss=loss_clf+self.args['alpha_aux']*loss_aux | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
losses += loss.item() | |
losses_aux+=loss_aux.item() | |
losses_clf+=loss_clf.item() | |
_, preds = torch.max(logits, dim=1) | |
correct += preds.eq(targets.expand_as(preds)).cpu().sum() | |
total += len(targets) | |
scheduler.step() | |
train_acc = np.around(tensor2numpy(correct)*100 / total, decimals=2) | |
if epoch%5==0: | |
test_acc = self._compute_accuracy(self._network, test_loader) | |
info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_aux {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}'.format( | |
self._cur_task, epoch+1, self.args["epochs"], losses/len(train_loader),losses_clf/len(train_loader),losses_aux/len(train_loader),train_acc, test_acc) | |
else: | |
info = 'Task {}, Epoch {}/{} => Loss {:.3f}, Loss_clf {:.3f}, Loss_aux {:.3f}, Train_accy {:.2f}'.format( | |
self._cur_task, epoch+1, self.args["epochs"], losses/len(train_loader), losses_clf/len(train_loader),losses_aux/len(train_loader),train_acc) | |
prog_bar.set_description(info) | |
logging.info(info) | |
def save_checkpoint(self, test_acc): | |
assert self.args['model_name'] == 'finetune' | |
checkpoint_name = f"checkpoints/finetune_{self.args['csv_name']}" | |
_checkpoint_cpu = copy.deepcopy(self._network) | |
if isinstance(_checkpoint_cpu, nn.DataParallel): | |
_checkpoint_cpu = _checkpoint_cpu.module | |
_checkpoint_cpu.cpu() | |
save_dict = { | |
"tasks": self._cur_task, | |
"convnet": _checkpoint_cpu.convnet.state_dict(), | |
"fc":_checkpoint_cpu.fc.state_dict(), | |
"test_acc": test_acc | |
} | |
torch.save(save_dict, "{}_{}.pkl".format(checkpoint_name, self._cur_task)) | |
def _construct_exemplar(self, data_manager, m): | |
logging.info("Constructing exemplars...({} per classes)".format(m)) | |
for class_idx in range(self._known_classes, self._total_classes): | |
data, targets, idx_dataset = data_manager.get_dataset( | |
np.arange(class_idx, class_idx + 1), | |
source="train", | |
mode="test", | |
ret_data=True, | |
) | |
idx_loader = DataLoader( | |
idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4 | |
) | |
vectors, _ = self._extract_vectors(idx_loader) | |
vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T | |
class_mean = np.mean(vectors, axis=0) | |
# Select | |
selected_exemplars = [] | |
exemplar_vectors = [] # [n, feature_dim] | |
for k in range(1, m + 1): | |
S = np.sum( | |
exemplar_vectors, axis=0 | |
) # [feature_dim] sum of selected exemplars vectors | |
mu_p = (vectors + S) / k # [n, feature_dim] sum to all vectors | |
i = np.argmin(np.sqrt(np.sum((class_mean - mu_p) ** 2, axis=1))) | |
selected_exemplars.append( | |
np.array(data[i]) | |
) # New object to avoid passing by inference | |
exemplar_vectors.append( | |
np.array(vectors[i]) | |
) # New object to avoid passing by inference | |
vectors = np.delete( | |
vectors, i, axis=0 | |
) # Remove it to avoid duplicative selection | |
data = np.delete( | |
data, i, axis=0 | |
) # Remove it to avoid duplicative selection | |
if len(vectors) == 0: | |
break | |
# uniques = np.unique(selected_exemplars, axis=0) | |
# print('Unique elements: {}'.format(len(uniques))) | |
selected_exemplars = np.array(selected_exemplars) | |
# exemplar_targets = np.full(m, class_idx) | |
exemplar_targets = np.full(selected_exemplars.shape[0], class_idx) | |
self._data_memory = ( | |
np.concatenate((self._data_memory, selected_exemplars)) | |
if len(self._data_memory) != 0 | |
else selected_exemplars | |
) | |
self._targets_memory = ( | |
np.concatenate((self._targets_memory, exemplar_targets)) | |
if len(self._targets_memory) != 0 | |
else exemplar_targets | |
) | |
# Exemplar mean | |
idx_dataset = data_manager.get_dataset( | |
[], | |
source="train", | |
mode="test", | |
appendent=(selected_exemplars, exemplar_targets), | |
) | |
idx_loader = DataLoader( | |
idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4 | |
) | |
vectors, _ = self._extract_vectors(idx_loader) | |
vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T | |
mean = np.mean(vectors, axis=0) | |
mean = mean / np.linalg.norm(mean) | |
self._class_means[class_idx, :] = mean |