Spaces:
Sleeping
Sleeping
import math | |
import logging | |
import numpy as np | |
import torch | |
from torch import optim | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
from models.base import BaseLearner | |
from utils.inc_net import CosineIncrementalNet | |
from utils.toolkit import tensor2numpy | |
epochs = 100 | |
lrate = 0.1 | |
ft_epochs = 20 | |
ft_lrate = 0.005 | |
batch_size = 32 | |
lambda_c_base = 5 | |
lambda_f_base = 1 | |
nb_proxy = 10 | |
weight_decay = 5e-4 | |
num_workers = 4 | |
""" | |
Distillation losses: POD-flat (lambda_f=1) + POD-spatial (lambda_c=5) | |
NME results are shown. | |
The reproduced results are not in line with the reported results. | |
Maybe I missed something... | |
+--------------------+--------------------+--------------------+--------------------+ | |
| Classifier | Steps | Reported (%) | Reproduced (%) | | |
+--------------------+--------------------+--------------------+--------------------+ | |
| Cosine (k=1) | 50 | 56.69 | 55.49 | | |
+--------------------+--------------------+--------------------+--------------------+ | |
| LSC-CE (k=10) | 50 | 59.86 | 55.69 | | |
+--------------------+--------------------+--------------------+--------------------+ | |
| LSC-NCA (k=10) | 50 | 61.40 | 56.50 | | |
+--------------------+--------------------+--------------------+--------------------+ | |
| LSC-CE (k=10) | 25 | ----- | 59.16 | | |
+--------------------+--------------------+--------------------+--------------------+ | |
| LSC-NCA (k=10) | 25 | 62.71 | 59.79 | | |
+--------------------+--------------------+--------------------+--------------------+ | |
| LSC-CE (k=10) | 10 | ----- | 62.59 | | |
+--------------------+--------------------+--------------------+--------------------+ | |
| LSC-NCA (k=10) | 10 | 64.03 | 62.81 | | |
+--------------------+--------------------+--------------------+--------------------+ | |
| LSC-CE (k=10) | 5 | ----- | 64.16 | | |
+--------------------+--------------------+--------------------+--------------------+ | |
| LSC-NCA (k=10) | 5 | 64.48 | 64.37 | | |
+--------------------+--------------------+--------------------+--------------------+ | |
""" | |
class PODNet(BaseLearner): | |
def __init__(self, args): | |
super().__init__(args) | |
self._network = CosineIncrementalNet( | |
args, pretrained=False, nb_proxy=nb_proxy | |
) | |
self._class_means = None | |
def after_task(self): | |
self._old_network = self._network.copy().freeze() | |
self._known_classes = self._total_classes | |
logging.info("Exemplar size: {}".format(self.exemplar_size)) | |
def incremental_train(self, data_manager): | |
self._cur_task += 1 | |
self._total_classes = self._known_classes + data_manager.get_task_size( | |
self._cur_task | |
) | |
self.task_size = self._total_classes - self._known_classes | |
self._network.update_fc(self._total_classes, self._cur_task) | |
logging.info( | |
"Learning on {}-{}".format(self._known_classes, self._total_classes) | |
) | |
train_dset = data_manager.get_dataset( | |
np.arange(self._known_classes, self._total_classes), | |
source="train", | |
mode="train", | |
appendent=self._get_memory(), | |
) | |
test_dset = data_manager.get_dataset( | |
np.arange(0, self._total_classes), source="test", mode="test" | |
) | |
self.train_loader = DataLoader( | |
train_dset, batch_size=batch_size, shuffle=True, num_workers=num_workers | |
) | |
self.test_loader = DataLoader( | |
test_dset, batch_size=batch_size, shuffle=False, num_workers=num_workers | |
) | |
self._train(data_manager, self.train_loader, self.test_loader) | |
self.build_rehearsal_memory(data_manager, self.samples_per_class) | |
def _train(self, data_manager, train_loader, test_loader): | |
if self._cur_task == 0: | |
self.factor = 0 | |
else: | |
self.factor = math.sqrt( | |
self._total_classes / (self._total_classes - self._known_classes) | |
) | |
logging.info("Adaptive factor: {}".format(self.factor)) | |
self._network.to(self._device) | |
if self._old_network is not None: | |
self._old_network.to(self._device) | |
if self._cur_task == 0: | |
network_params = self._network.parameters() | |
else: | |
ignored_params = list(map(id, self._network.fc.fc1.parameters())) | |
base_params = filter( | |
lambda p: id(p) not in ignored_params, self._network.parameters() | |
) | |
network_params = [ | |
{"params": base_params, "lr": lrate, "weight_decay": weight_decay}, | |
{ | |
"params": self._network.fc.fc1.parameters(), | |
"lr": 0, | |
"weight_decay": 0, | |
}, | |
] | |
optimizer = optim.SGD( | |
network_params, lr=lrate, momentum=0.9, weight_decay=weight_decay | |
) | |
scheduler = optim.lr_scheduler.CosineAnnealingLR( | |
optimizer=optimizer, T_max=epochs | |
) | |
self._run(train_loader, test_loader, optimizer, scheduler, epochs) | |
if self._cur_task == 0: | |
return | |
logging.info( | |
"Finetune the network (classifier part) with the undersampled dataset!" | |
) | |
if self._fixed_memory: | |
finetune_samples_per_class = self._memory_per_class | |
self._construct_exemplar_unified(data_manager, finetune_samples_per_class) | |
else: | |
finetune_samples_per_class = self._memory_size // self._known_classes | |
self._reduce_exemplar(data_manager, finetune_samples_per_class) | |
self._construct_exemplar(data_manager, finetune_samples_per_class) | |
finetune_train_dataset = data_manager.get_dataset( | |
[], source="train", mode="train", appendent=self._get_memory() | |
) | |
finetune_train_loader = DataLoader( | |
finetune_train_dataset, | |
batch_size=batch_size, | |
shuffle=True, | |
num_workers=num_workers, | |
) | |
logging.info( | |
"The size of finetune dataset: {}".format(len(finetune_train_dataset)) | |
) | |
ignored_params = list(map(id, self._network.fc.fc1.parameters())) | |
base_params = filter( | |
lambda p: id(p) not in ignored_params, self._network.parameters() | |
) | |
network_params = [ | |
{"params": base_params, "lr": ft_lrate, "weight_decay": weight_decay}, | |
{"params": self._network.fc.fc1.parameters(), "lr": 0, "weight_decay": 0}, | |
] | |
optimizer = optim.SGD( | |
network_params, lr=ft_lrate, momentum=0.9, weight_decay=weight_decay | |
) | |
scheduler = optim.lr_scheduler.CosineAnnealingLR( | |
optimizer=optimizer, T_max=ft_epochs | |
) | |
self._run(finetune_train_loader, test_loader, optimizer, scheduler, ft_epochs) | |
if self._fixed_memory: | |
self._data_memory = self._data_memory[ | |
: -self._memory_per_class * self.task_size | |
] | |
self._targets_memory = self._targets_memory[ | |
: -self._memory_per_class * self.task_size | |
] | |
assert ( | |
len( | |
np.setdiff1d( | |
self._targets_memory, np.arange(0, self._known_classes) | |
) | |
) | |
== 0 | |
), "Exemplar error!" | |
def _run(self, train_loader, test_loader, optimizer, scheduler, epk): | |
for epoch in range(1, epk + 1): | |
self._network.train() | |
lsc_losses = 0.0 | |
spatial_losses = 0.0 | |
flat_losses = 0.0 | |
correct, total = 0, 0 | |
for i, (_, inputs, targets) in enumerate(train_loader): | |
inputs, targets = inputs.to(self._device), targets.to(self._device) | |
outputs = self._network(inputs) | |
logits = outputs["logits"] | |
features = outputs["features"] | |
fmaps = outputs["fmaps"] | |
lsc_loss = nca(logits, targets) | |
spatial_loss = 0.0 | |
flat_loss = 0.0 | |
if self._old_network is not None: | |
with torch.no_grad(): | |
old_outputs = self._old_network(inputs) | |
old_features = old_outputs["features"] | |
old_fmaps = old_outputs["fmaps"] | |
flat_loss = ( | |
F.cosine_embedding_loss( | |
features, | |
old_features.detach(), | |
torch.ones(inputs.shape[0]).to(self._device), | |
) | |
* self.factor | |
* lambda_f_base | |
) | |
spatial_loss = ( | |
pod_spatial_loss(fmaps, old_fmaps) * self.factor * lambda_c_base | |
) | |
loss = lsc_loss + flat_loss + spatial_loss | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
lsc_losses += lsc_loss.item() | |
spatial_losses += ( | |
spatial_loss.item() if self._cur_task != 0 else spatial_loss | |
) | |
flat_losses += flat_loss.item() if self._cur_task != 0 else flat_loss | |
_, preds = torch.max(logits, dim=1) | |
correct += preds.eq(targets.expand_as(preds)).cpu().sum() | |
total += len(targets) | |
if scheduler is not None: | |
scheduler.step() | |
train_acc = np.around(tensor2numpy(correct) * 100 / total, decimals=2) | |
test_acc = self._compute_accuracy(self._network, test_loader) | |
info1 = "Task {}, Epoch {}/{} (LR {:.5f}) => ".format( | |
self._cur_task, epoch, epk, optimizer.param_groups[0]["lr"] | |
) | |
info2 = "LSC_loss {:.2f}, Spatial_loss {:.2f}, Flat_loss {:.2f}, Train_acc {:.2f}, Test_acc {:.2f}".format( | |
lsc_losses / (i + 1), | |
spatial_losses / (i + 1), | |
flat_losses / (i + 1), | |
train_acc, | |
test_acc, | |
) | |
logging.info(info1 + info2) | |
def pod_spatial_loss(old_fmaps, fmaps, normalize=True): | |
""" | |
a, b: list of [bs, c, w, h] | |
""" | |
loss = torch.tensor(0.0).to(fmaps[0].device) | |
for i, (a, b) in enumerate(zip(old_fmaps, fmaps)): | |
assert a.shape == b.shape, "Shape error" | |
a = torch.pow(a, 2) | |
b = torch.pow(b, 2) | |
a_h = a.sum(dim=3).view(a.shape[0], -1) # [bs, c*w] | |
b_h = b.sum(dim=3).view(b.shape[0], -1) # [bs, c*w] | |
a_w = a.sum(dim=2).view(a.shape[0], -1) # [bs, c*h] | |
b_w = b.sum(dim=2).view(b.shape[0], -1) # [bs, c*h] | |
a = torch.cat([a_h, a_w], dim=-1) | |
b = torch.cat([b_h, b_w], dim=-1) | |
if normalize: | |
a = F.normalize(a, dim=1, p=2) | |
b = F.normalize(b, dim=1, p=2) | |
layer_loss = torch.mean(torch.frobenius_norm(a - b, dim=-1)) | |
loss += layer_loss | |
return loss / len(fmaps) | |
def nca( | |
similarities, | |
targets, | |
class_weights=None, | |
focal_gamma=None, | |
scale=1.0, | |
margin=0.6, | |
exclude_pos_denominator=True, | |
hinge_proxynca=False, | |
memory_flags=None, | |
): | |
margins = torch.zeros_like(similarities) | |
margins[torch.arange(margins.shape[0]), targets] = margin | |
similarities = scale * (similarities - margin) | |
if exclude_pos_denominator: | |
similarities = similarities - similarities.max(1)[0].view(-1, 1) | |
disable_pos = torch.zeros_like(similarities) | |
disable_pos[torch.arange(len(similarities)), targets] = similarities[ | |
torch.arange(len(similarities)), targets | |
] | |
numerator = similarities[torch.arange(similarities.shape[0]), targets] | |
denominator = similarities - disable_pos | |
losses = numerator - torch.log(torch.exp(denominator).sum(-1)) | |
if class_weights is not None: | |
losses = class_weights[targets] * losses | |
losses = -losses | |
if hinge_proxynca: | |
losses = torch.clamp(losses, min=0.0) | |
loss = torch.mean(losses) | |
return loss | |
return F.cross_entropy( | |
similarities, targets, weight=class_weights, reduction="mean" | |
) | |