Spaces:
Runtime error
Runtime error
Commit
·
d0e0e62
1
Parent(s):
9361e03
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image, ImageDraw, ImageFont
|
3 |
+
import random
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from datasets import concatenate_datasets
|
7 |
+
from operator import itemgetter
|
8 |
+
import collections
|
9 |
+
|
10 |
+
# download datasets
|
11 |
+
from datasets import load_dataset
|
12 |
+
|
13 |
+
dataset_small = load_dataset("pierreguillou/DocLayNet-small")
|
14 |
+
dataset_base = load_dataset("pierreguillou/DocLayNet-base")
|
15 |
+
|
16 |
+
id2label = {idx:label for idx,label in enumerate(dataset_small["train"].features["categories"].feature.names)}
|
17 |
+
labels = [label for idx, label in id2label.items()]
|
18 |
+
|
19 |
+
# need to change the coordinates format
|
20 |
+
def convert_box(box):
|
21 |
+
x, y, w, h = tuple(box) # the row comes in (left, top, width, height) format
|
22 |
+
actual_box = [x, y, x+w, y+h] # we turn it into (left, top, left+widght, top+height) to get the actual box
|
23 |
+
return actual_box
|
24 |
+
|
25 |
+
# get back original size
|
26 |
+
def original_box(box, original_width, original_height, coco_width, coco_height):
|
27 |
+
return [
|
28 |
+
int(original_width * (box[0] / coco_width)),
|
29 |
+
int(original_height * (box[1] / coco_height)),
|
30 |
+
int(original_width * (box[2] / coco_width)),
|
31 |
+
int(original_height* (box[3] / coco_height)),
|
32 |
+
]
|
33 |
+
|
34 |
+
# function to sort bounding boxes
|
35 |
+
def get_sorted_boxes(bboxes):
|
36 |
+
|
37 |
+
# sort by y from page top to bottom
|
38 |
+
bboxes = sorted(bboxes, key=itemgetter(1), reverse=False)
|
39 |
+
y_list = [bbox[1] for bbox in bboxes]
|
40 |
+
|
41 |
+
# sort by x from page left to right when boxes with same y
|
42 |
+
if len(list(set(y_list))) != len(y_list):
|
43 |
+
y_list_duplicates_indexes = dict()
|
44 |
+
y_list_duplicates = [item for item, count in collections.Counter(y_list).items() if count > 1]
|
45 |
+
for item in y_list_duplicates:
|
46 |
+
y_list_duplicates_indexes[item] = [i for i, e in enumerate(y_list) if e == item]
|
47 |
+
bbox_list_y_duplicates = sorted(np.array(bboxes)[y_list_duplicates_indexes[item]].tolist(), key=itemgetter(0), reverse=False)
|
48 |
+
np_array_bboxes = np.array(bboxes)
|
49 |
+
np_array_bboxes[y_list_duplicates_indexes[item]] = np.array(bbox_list_y_duplicates)
|
50 |
+
bboxes = np_array_bboxes.tolist()
|
51 |
+
|
52 |
+
return bboxes
|
53 |
+
|
54 |
+
# categories colors
|
55 |
+
label2color = {
|
56 |
+
'Caption': 'brown',
|
57 |
+
'Footnote': 'orange',
|
58 |
+
'Formula': 'gray',
|
59 |
+
'List-item': 'yellow',
|
60 |
+
'Page-footer': 'red',
|
61 |
+
'Page-header': 'red',
|
62 |
+
'Picture': 'violet',
|
63 |
+
'Section-header': 'orange',
|
64 |
+
'Table': 'green',
|
65 |
+
'Text': 'blue',
|
66 |
+
'Title': 'pink'
|
67 |
+
}
|
68 |
+
|
69 |
+
# image witout content
|
70 |
+
examples_dir = 'samples/'
|
71 |
+
images_wo_content = examples_dir + "wo_content.png"
|
72 |
+
|
73 |
+
df_paragraphs_wo_content, df_lines_wo_content = pd.DataFrame(), pd.DataFrame()
|
74 |
+
|
75 |
+
df_paragraphs_wo_content["paragraphs"] = [0]
|
76 |
+
df_paragraphs_wo_content["categories"] = ["no content"]
|
77 |
+
df_paragraphs_wo_content["texts"] = ["no content"]
|
78 |
+
df_paragraphs_wo_content["bounding boxes"] = ["no content"]
|
79 |
+
|
80 |
+
df_lines_wo_content["lines"] = [0]
|
81 |
+
df_lines_wo_content["categories"] = ["no content"]
|
82 |
+
df_lines_wo_content["texts"] = ["no content"]
|
83 |
+
df_lines_wo_content["bounding boxes"] = ["no content"]
|
84 |
+
|
85 |
+
# lists
|
86 |
+
font = ImageFont.load_default()
|
87 |
+
|
88 |
+
dataset_names = ["small", "base"]
|
89 |
+
splits = ["all", "train", "validation", "test"]
|
90 |
+
domains = ["all", "Financial Reports", "Manuals", "Scientific Articles", "Laws & Regulations", "Patents", "Government Tenders"]
|
91 |
+
domains_names = [domain_name.lower().replace(" ", "_") for domain_name in domains]
|
92 |
+
categories = labels + ["all"]
|
93 |
+
|
94 |
+
# function to get a rendom image and all data from DocLayNet
|
95 |
+
def generate_annotated_image(dataset_name, split, domain, category):
|
96 |
+
|
97 |
+
def get_dataset(dataset_name, split, domain, category):
|
98 |
+
|
99 |
+
# error message
|
100 |
+
msg_error = ""
|
101 |
+
|
102 |
+
# get dataset
|
103 |
+
if dataset_name == "small": example = dataset_small
|
104 |
+
else: example = dataset_base
|
105 |
+
|
106 |
+
# get split
|
107 |
+
if split == "all":
|
108 |
+
example = concatenate_datasets([example["train"], example["validation"], example["test"]])
|
109 |
+
else:
|
110 |
+
example = example[split]
|
111 |
+
|
112 |
+
# get domain
|
113 |
+
domain_name = domains_names[domains.index(domain)]
|
114 |
+
if domain_name != "all":
|
115 |
+
example = example.filter(lambda example: example["doc_category"] == domain_name)
|
116 |
+
if len(example) == 0:
|
117 |
+
msg_error = f'There is no image with at least one annotated bounding box that matches to your parameters ("{domain}" domain / "DocLayNet {dataset_name}" dataset splitted into "{split}").'
|
118 |
+
example = dict()
|
119 |
+
return example, msg_error
|
120 |
+
|
121 |
+
# get category
|
122 |
+
idx_list = list()
|
123 |
+
if category != "all":
|
124 |
+
for idx, categories_list in zip(example["id"], example["categories"]):
|
125 |
+
if category in categories_list:
|
126 |
+
idx_list.append(idx)
|
127 |
+
example = example.select(idx_list)
|
128 |
+
if len(example) == 0:
|
129 |
+
msg_error = f'There is no image with at least one annotated bounding box that matches to your parameters (category: "{category}" / domain: "{domain}" / dataset: "DocLayNet {dataset_name}" / split: "{split}").'
|
130 |
+
example = dict()
|
131 |
+
return example, msg_error
|
132 |
+
|
133 |
+
return example, msg_error
|
134 |
+
|
135 |
+
# get results
|
136 |
+
example, msg_error = get_dataset(dataset_name, split, domain, category)
|
137 |
+
|
138 |
+
if len(msg_error) > 0:
|
139 |
+
return msg_error, images_wo_content, images_wo_content, df_paragraphs_wo_content, df_lines_wo_content
|
140 |
+
|
141 |
+
else:
|
142 |
+
# get random image & PDF data
|
143 |
+
image_files = example["image"]
|
144 |
+
index = random.randint(0, len(image_files))
|
145 |
+
image = image_files[index] # original image
|
146 |
+
coco_width, coco_height = example[index]["coco_width"], example[index]["coco_height"]
|
147 |
+
original_width, original_height = example[index]["original_width"], example[index]["original_height"]
|
148 |
+
original_filename = example[index]["original_filename"]
|
149 |
+
page_no = example[index]["page_no"]
|
150 |
+
num_pages = example[index]["num_pages"]
|
151 |
+
|
152 |
+
# resize image to original
|
153 |
+
image = image.resize((original_width, original_height))
|
154 |
+
|
155 |
+
# get corresponding annotations
|
156 |
+
texts = example[index]["texts"]
|
157 |
+
bboxes_block = example[index]["bboxes_block"]
|
158 |
+
bboxes_line = example[index]["bboxes_line"]
|
159 |
+
categories = example[index]["categories"]
|
160 |
+
domain = example[index]["doc_category"]
|
161 |
+
|
162 |
+
# get list of categories
|
163 |
+
categories_unique = sorted(list(set([categories_list for categories_list in categories])))
|
164 |
+
categories_unique = [id2label[idx] for idx in categories_unique]
|
165 |
+
|
166 |
+
# convert boxes to original
|
167 |
+
original_bboxes_block = [original_box(convert_box(box), original_width, original_height, coco_width, coco_height) for box in bboxes_block]
|
168 |
+
original_bboxes_line = [original_box(convert_box(box), original_width, original_height, coco_width, coco_height) for box in bboxes_line]
|
169 |
+
original_bboxes = [original_bboxes_block, original_bboxes_line]
|
170 |
+
|
171 |
+
##### block boxes #####
|
172 |
+
|
173 |
+
# get list of unique block boxes
|
174 |
+
original_blocks = dict()
|
175 |
+
original_bboxes_block_list = list()
|
176 |
+
original_bbox_block_prec = list()
|
177 |
+
for count_block, original_bbox_block in enumerate(original_bboxes_block):
|
178 |
+
if original_bbox_block != original_bbox_block_prec:
|
179 |
+
original_bbox_block_indexes = [i for i, original_bbox in enumerate(original_bboxes_block) if original_bbox == original_bbox_block]
|
180 |
+
original_blocks[count_block] = original_bbox_block_indexes
|
181 |
+
original_bboxes_block_list.append(original_bbox_block)
|
182 |
+
original_bbox_block_prec = original_bbox_block
|
183 |
+
|
184 |
+
# get list of categories and texts by unique block boxes
|
185 |
+
category_block_list, text_block_list = list(), list()
|
186 |
+
for original_bbox_block in original_bboxes_block_list:
|
187 |
+
count_block = original_bboxes_block.index(original_bbox_block)
|
188 |
+
original_bbox_block_indexes = original_blocks[count_block]
|
189 |
+
category_block = categories[original_bbox_block_indexes[0]]
|
190 |
+
category_block_list.append(category_block)
|
191 |
+
if id2label[category_block] == "Text" or id2label[category_block] == "Caption" or id2label[category_block] == "Footnote":
|
192 |
+
text_block = ' '.join(np.array(texts)[original_bbox_block_indexes].tolist())
|
193 |
+
elif id2label[category_block] == "Section-header" or id2label[category_block] == "Title" or id2label[category_block] == "Picture" or id2label[category_block] == "Formula" or id2label[category_block] == "List-item" or id2label[category_block] == "Table" or id2label[category_block] == "Page-header" or id2label[category_block] == "Page-footer":
|
194 |
+
text_block = '\n'.join(np.array(texts)[original_bbox_block_indexes].tolist())
|
195 |
+
text_block_list.append(text_block)
|
196 |
+
|
197 |
+
# sort data from y = 0 to end of page (and after, x=0 to end of page when necessary)
|
198 |
+
sorted_original_bboxes_block_list = get_sorted_boxes(original_bboxes_block_list)
|
199 |
+
sorted_original_bboxes_block_list_indexes = [original_bboxes_block_list.index(item) for item in sorted_original_bboxes_block_list]
|
200 |
+
sorted_category_block_list = np.array(category_block_list)[sorted_original_bboxes_block_list_indexes].tolist()
|
201 |
+
sorted_text_block_list = np.array(text_block_list)[sorted_original_bboxes_block_list_indexes].tolist()
|
202 |
+
|
203 |
+
##### line boxes ####
|
204 |
+
|
205 |
+
# sort data from y = 0 to end of page (and after, x=0 to end of page when necessary)
|
206 |
+
original_bboxes_line_list = original_bboxes_line
|
207 |
+
category_line_list = categories
|
208 |
+
text_line_list = texts
|
209 |
+
sorted_original_bboxes_line_list = get_sorted_boxes(original_bboxes_line_list)
|
210 |
+
sorted_original_bboxes_line_list_indexes = [original_bboxes_line_list.index(item) for item in sorted_original_bboxes_line_list]
|
211 |
+
sorted_category_line_list = np.array(category_line_list)[sorted_original_bboxes_line_list_indexes].tolist()
|
212 |
+
sorted_text_line_list = np.array(text_line_list)[sorted_original_bboxes_line_list_indexes].tolist()
|
213 |
+
|
214 |
+
# setup images & PDf data
|
215 |
+
columns = 2
|
216 |
+
images = [image.copy(), image.copy()]
|
217 |
+
num_imgs = len(images)
|
218 |
+
|
219 |
+
imgs, df_paragraphs, df_lines = dict(), pd.DataFrame(), pd.DataFrame()
|
220 |
+
for i, img in enumerate(images):
|
221 |
+
|
222 |
+
draw = ImageDraw.Draw(img)
|
223 |
+
|
224 |
+
for box, label_idx, text in zip(original_bboxes[i], categories, texts):
|
225 |
+
label = id2label[label_idx]
|
226 |
+
color = label2color[label]
|
227 |
+
draw.rectangle(box, outline=color)
|
228 |
+
text = text.encode('latin-1', 'replace').decode('latin-1') # https://stackoverflow.com/questions/56761449/unicodeencodeerror-latin-1-codec-cant-encode-character-u2013-writing-to
|
229 |
+
draw.text((box[0] + 10, box[1] - 10), text=label, fill=color, font=font)
|
230 |
+
|
231 |
+
if i == 0:
|
232 |
+
imgs["paragraphs"] = img
|
233 |
+
|
234 |
+
df_paragraphs["paragraphs"] = list(range(len(sorted_original_bboxes_block_list)))
|
235 |
+
df_paragraphs["categories"] = [id2label[label_idx] for label_idx in sorted_category_block_list]
|
236 |
+
df_paragraphs["texts"] = sorted_text_block_list
|
237 |
+
df_paragraphs["bounding boxes"] = [str(bbox) for bbox in sorted_original_bboxes_block_list]
|
238 |
+
|
239 |
+
else:
|
240 |
+
imgs["lines"] = img
|
241 |
+
|
242 |
+
df_lines["lines"] = list(range(len(sorted_original_bboxes_line_list)))
|
243 |
+
df_lines["categories"] = [id2label[label_idx] for label_idx in sorted_category_line_list]
|
244 |
+
df_lines["texts"] = sorted_text_line_list
|
245 |
+
df_lines["bounding boxes"] = [str(bbox) for bbox in sorted_original_bboxes_line_list]
|
246 |
+
|
247 |
+
msg = f'The page {page_no} of PDF "{original_filename}" (domain "{domain}") matches your parameters.'
|
248 |
+
|
249 |
+
return msg, imgs["paragraphs"], imgs["lines"], df_paragraphs, df_lines
|
250 |
+
|
251 |
+
# gradio APP
|
252 |
+
with gr.Blocks(title="DocLayNet image viewer", css=".gradio-container") as demo:
|
253 |
+
gr.HTML("""
|
254 |
+
<div style="font-family:'Times New Roman', 'Serif'; font-size:26pt; font-weight:bold; text-align:center;"><h1>DocLayNet image viewer</h1></div>
|
255 |
+
<div style="margin-top: 20px"><p>(01/29/2023) This APP is an image viewer of the DocLayNet dataset.</p></div>
|
256 |
+
<div><p>It uses the datasets <a href="https://huggingface.co/datasets/pierreguillou/DocLayNet-small" target="_blank">DocLayNet small</a> and <a href="https://huggingface.co/datasets/pierreguillou/DocLayNet-base" target="_blank">DocLayNet base</a>.</p></div>
|
257 |
+
<div><p>Make your parameters selections and the output will show 2 images of a randomly selected PDF with annotated bounding boxes, one of paragraphs and the other of lines, and a table of texts with their labels.</p></div>
|
258 |
+
""")
|
259 |
+
with gr.Row():
|
260 |
+
with gr.Column():
|
261 |
+
dataset_name_gr = gr.Radio(dataset_names, value="small", label="DocLayNet dataset")
|
262 |
+
with gr.Column():
|
263 |
+
split_gr = gr.Dropdown(splits, value="all", label="Split")
|
264 |
+
with gr.Column():
|
265 |
+
domain_gr = gr.Dropdown(domains, value="all", label="Domain")
|
266 |
+
with gr.Column():
|
267 |
+
category_gr = gr.Dropdown(categories, value="all", label="Category")
|
268 |
+
btn = gr.Button("Display PDF image")
|
269 |
+
with gr.Row():
|
270 |
+
output_msg = gr.Textbox(label="Results")
|
271 |
+
with gr.Row():
|
272 |
+
# with gr.Column():
|
273 |
+
# json = gr.JSON(label="JSON")
|
274 |
+
with gr.Column():
|
275 |
+
img_paragraphs = gr.Image(type="pil", label="Bounding boxes of paragraphs")
|
276 |
+
with gr.Column():
|
277 |
+
img_lines = gr.Image(type="pil", label="Bounding boxes of lines")
|
278 |
+
|
279 |
+
with gr.Row():
|
280 |
+
with gr.Column():
|
281 |
+
df_paragraphs = gr.Dataframe(
|
282 |
+
headers=["paragraphs", "categories", "texts", "bounding boxes"],
|
283 |
+
datatype=["number", "str", "str", "str"],
|
284 |
+
# row_count='dynamic',
|
285 |
+
col_count=(4, "fixed"),
|
286 |
+
interactive=False,
|
287 |
+
label="Paragraphs data",
|
288 |
+
type="pandas",
|
289 |
+
wrap=True
|
290 |
+
)
|
291 |
+
with gr.Column():
|
292 |
+
df_lines = gr.Dataframe(
|
293 |
+
headers=["lines", "categories", "texts", "bounding boxes"],
|
294 |
+
datatype=["number", "str", "str", "str"],
|
295 |
+
# row_count='dynamic',
|
296 |
+
col_count=(4, "fixed"),
|
297 |
+
interactive=False,
|
298 |
+
label="Lines data",
|
299 |
+
type="pandas",
|
300 |
+
wrap=True
|
301 |
+
)
|
302 |
+
btn.click(generate_annotated_image, inputs=[dataset_name_gr, split_gr, domain_gr, category_gr], outputs=[output_msg, img_paragraphs, img_lines, df_paragraphs, df_lines])
|
303 |
+
|
304 |
+
gr.Markdown("## Example")
|
305 |
+
gr.Examples(
|
306 |
+
[["small", "all", "all", "all"]],
|
307 |
+
[dataset_name_gr, split_gr, domain_gr, category_gr],
|
308 |
+
[output_msg, img_paragraphs, img_lines, df_paragraphs, df_lines],
|
309 |
+
fn=generate_annotated_image,
|
310 |
+
cache_examples=True,
|
311 |
+
)
|
312 |
+
|
313 |
+
demo.launch()
|