Spaces:
Build error
Build error
Pietro Lesci
commited on
Commit
·
ca663e1
1
Parent(s):
8400e75
improve UI
Browse files- app.py +13 -5
- src/components.py +92 -6
- src/utils.py +17 -4
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
|
3 |
-
from src.components import faq, footer, form, presentation
|
4 |
from src.utils import convert_df, get_logo, read_file
|
5 |
|
6 |
# app configs
|
@@ -41,9 +41,18 @@ if not uploaded_fl:
|
|
41 |
faq()
|
42 |
else:
|
43 |
df = read_file(uploaded_fl)
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
st.download_button(
|
48 |
label="Download data as CSV",
|
49 |
data=payload,
|
@@ -51,6 +60,5 @@ else:
|
|
51 |
mime="text/csv",
|
52 |
)
|
53 |
|
54 |
-
|
55 |
# footer
|
56 |
footer()
|
|
|
1 |
import streamlit as st
|
2 |
|
3 |
+
from src.components import faq, footer, form, presentation, analysis
|
4 |
from src.utils import convert_df, get_logo, read_file
|
5 |
|
6 |
# app configs
|
|
|
41 |
faq()
|
42 |
else:
|
43 |
df = read_file(uploaded_fl)
|
44 |
+
outputs = form(df)
|
45 |
+
|
46 |
+
# change or create session state
|
47 |
+
if outputs is not None or "outputs" not in st.session_state:
|
48 |
+
st.session_state["outputs"] = outputs
|
49 |
+
|
50 |
+
# when procedure is performed
|
51 |
+
if st.session_state["outputs"] is not None:
|
52 |
+
|
53 |
+
df = analysis(st.session_state["outputs"])
|
54 |
+
|
55 |
+
payload = convert_df(df)
|
56 |
st.download_button(
|
57 |
label="Download data as CSV",
|
58 |
data=payload,
|
|
|
60 |
mime="text/csv",
|
61 |
)
|
62 |
|
|
|
63 |
# footer
|
64 |
footer()
|
src/components.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
|
3 |
from src.configs import Languages, PreprocessingConfigs, SupportedFiles
|
4 |
from src.preprocessing import PreprocessingPipeline
|
@@ -7,6 +9,7 @@ from src.utils import get_col_indices
|
|
7 |
|
8 |
|
9 |
def form(df):
|
|
|
10 |
with st.form("Wordify form"):
|
11 |
col1, col2, col3 = st.columns(3)
|
12 |
cols = [""] + df.columns.tolist()
|
@@ -43,12 +46,16 @@ def form(df):
|
|
43 |
pre_steps = st.multiselect(
|
44 |
"Select pre-lemmatization processing steps (ordered)",
|
45 |
options=steps_options,
|
46 |
-
default=[
|
|
|
|
|
47 |
format_func=lambda x: x.replace("_", " ").title(),
|
48 |
help="Select the processing steps to apply before the text is lemmatized",
|
49 |
)
|
50 |
|
51 |
-
lammatization_options = list(
|
|
|
|
|
52 |
lemmatization_step = st.selectbox(
|
53 |
"Select lemmatization",
|
54 |
options=lammatization_options,
|
@@ -59,7 +66,10 @@ def form(df):
|
|
59 |
post_steps = st.multiselect(
|
60 |
"Select post-lemmatization processing steps (ordered)",
|
61 |
options=steps_options,
|
62 |
-
default=[
|
|
|
|
|
|
|
63 |
format_func=lambda x: x.replace("_", " ").title(),
|
64 |
help="Select the processing steps to apply after the text is lemmatized",
|
65 |
)
|
@@ -68,12 +78,21 @@ def form(df):
|
|
68 |
submitted = st.form_submit_button("Submit")
|
69 |
if submitted:
|
70 |
|
|
|
|
|
71 |
# preprocess
|
72 |
if not disable_preprocessing:
|
73 |
with st.spinner("Step 1/4: Preprocessing text"):
|
74 |
-
pipe = PreprocessingPipeline(
|
|
|
|
|
75 |
df = pipe.vaex_process(df, text_column)
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
# prepare input
|
78 |
with st.spinner("Step 2/4: Preparing inputs"):
|
79 |
input_dict = input_transform(df[text_column], df[label_column])
|
@@ -86,7 +105,19 @@ def form(df):
|
|
86 |
with st.spinner("Step 4/4: Preparing outputs"):
|
87 |
new_df = output_transform(pos, neg)
|
88 |
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
|
92 |
def faq():
|
@@ -274,3 +305,58 @@ def contacts():
|
|
274 |
|
275 |
<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d2798.949796165441!2d9.185730115812493!3d45.450667779100726!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x4786c405ae6543c9%3A0xf2bb2313b36af88c!2sVia%20Guglielmo%20R%C3%B6ntgen%2C%201%2C%2020136%20Milano%20MI!5e0!3m2!1sit!2sit!4v1569325279433!5m2!1sit!2sit" frameborder="0" style="border:0; width: 100%; height: 312px;" allowfullscreen></iframe>
|
276 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import time
|
3 |
+
import pandas as pd
|
4 |
|
5 |
from src.configs import Languages, PreprocessingConfigs, SupportedFiles
|
6 |
from src.preprocessing import PreprocessingPipeline
|
|
|
9 |
|
10 |
|
11 |
def form(df):
|
12 |
+
st.subheader("Parameters")
|
13 |
with st.form("Wordify form"):
|
14 |
col1, col2, col3 = st.columns(3)
|
15 |
cols = [""] + df.columns.tolist()
|
|
|
46 |
pre_steps = st.multiselect(
|
47 |
"Select pre-lemmatization processing steps (ordered)",
|
48 |
options=steps_options,
|
49 |
+
default=[
|
50 |
+
steps_options[i] for i in PreprocessingConfigs.DEFAULT_PRE.value
|
51 |
+
],
|
52 |
format_func=lambda x: x.replace("_", " ").title(),
|
53 |
help="Select the processing steps to apply before the text is lemmatized",
|
54 |
)
|
55 |
|
56 |
+
lammatization_options = list(
|
57 |
+
PreprocessingPipeline.lemmatization_component().keys()
|
58 |
+
)
|
59 |
lemmatization_step = st.selectbox(
|
60 |
"Select lemmatization",
|
61 |
options=lammatization_options,
|
|
|
66 |
post_steps = st.multiselect(
|
67 |
"Select post-lemmatization processing steps (ordered)",
|
68 |
options=steps_options,
|
69 |
+
default=[
|
70 |
+
steps_options[i]
|
71 |
+
for i in PreprocessingConfigs.DEFAULT_POST.value
|
72 |
+
],
|
73 |
format_func=lambda x: x.replace("_", " ").title(),
|
74 |
help="Select the processing steps to apply after the text is lemmatized",
|
75 |
)
|
|
|
78 |
submitted = st.form_submit_button("Submit")
|
79 |
if submitted:
|
80 |
|
81 |
+
start_time = time.time()
|
82 |
+
|
83 |
# preprocess
|
84 |
if not disable_preprocessing:
|
85 |
with st.spinner("Step 1/4: Preprocessing text"):
|
86 |
+
pipe = PreprocessingPipeline(
|
87 |
+
language, pre_steps, lemmatization_step, post_steps
|
88 |
+
)
|
89 |
df = pipe.vaex_process(df, text_column)
|
90 |
+
else:
|
91 |
+
with st.spinner(
|
92 |
+
"Step 1/4: Preprocessing has been disabled - doing nothing"
|
93 |
+
):
|
94 |
+
time.sleep(1.5)
|
95 |
+
|
96 |
# prepare input
|
97 |
with st.spinner("Step 2/4: Preparing inputs"):
|
98 |
input_dict = input_transform(df[text_column], df[label_column])
|
|
|
105 |
with st.spinner("Step 4/4: Preparing outputs"):
|
106 |
new_df = output_transform(pos, neg)
|
107 |
|
108 |
+
# reset the index for the UI
|
109 |
+
new_df = new_df.reset_index(drop=True)
|
110 |
+
|
111 |
+
end_time = time.time()
|
112 |
+
meta_data = {
|
113 |
+
"vocab_size": input_dict["X"].shape[1],
|
114 |
+
"n_instances": input_dict["X"].shape[0],
|
115 |
+
"vocabulary": pd.DataFrame({"Vocabulary": input_dict["X_names"]}),
|
116 |
+
"labels": pd.DataFrame({"Labels": input_dict["y_names"]}),
|
117 |
+
"time": round(end_time - start_time),
|
118 |
+
}
|
119 |
+
|
120 |
+
return new_df, meta_data
|
121 |
|
122 |
|
123 |
def faq():
|
|
|
305 |
|
306 |
<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d2798.949796165441!2d9.185730115812493!3d45.450667779100726!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x4786c405ae6543c9%3A0xf2bb2313b36af88c!2sVia%20Guglielmo%20R%C3%B6ntgen%2C%201%2C%2020136%20Milano%20MI!5e0!3m2!1sit!2sit!4v1569325279433!5m2!1sit!2sit" frameborder="0" style="border:0; width: 100%; height: 312px;" allowfullscreen></iframe>
|
307 |
"""
|
308 |
+
|
309 |
+
|
310 |
+
def analysis(outputs):
|
311 |
+
|
312 |
+
df, meta_data = outputs
|
313 |
+
|
314 |
+
st.subheader("Results")
|
315 |
+
st.markdown(
|
316 |
+
"""
|
317 |
+
Wordify successfully run and you can now look at the results before downloading the wordified file.
|
318 |
+
In particular, you can use the slider to filter only those words that have a `Score` above (>=) a certain threshold.
|
319 |
+
For meaningful results, we suggest keeping the threshold to 0.25.
|
320 |
+
"""
|
321 |
+
)
|
322 |
+
|
323 |
+
col1, col2 = st.columns([2, 1])
|
324 |
+
|
325 |
+
with col1:
|
326 |
+
threshold = st.slider(
|
327 |
+
"Select threshold",
|
328 |
+
min_value=0.0,
|
329 |
+
max_value=1.0,
|
330 |
+
step=0.01,
|
331 |
+
value=0.25,
|
332 |
+
help="To return everything, select 0.",
|
333 |
+
)
|
334 |
+
subset_df = df.loc[df["Score"] >= threshold]
|
335 |
+
st.write(subset_df)
|
336 |
+
|
337 |
+
with col2:
|
338 |
+
st.markdown("**Some info about your data**")
|
339 |
+
st.markdown(
|
340 |
+
f"""
|
341 |
+
Your input file contained {meta_data["n_instances"]:,} rows and
|
342 |
+
Wordify took {meta_data["time"]:,} seconds to run.
|
343 |
+
|
344 |
+
The total number of n-grams Wordify considered is {meta_data["vocab_size"]:,}.
|
345 |
+
With the current selected threshold on the `Score` (>={threshold}) the output contains {subset_df["Word"].nunique():,}
|
346 |
+
unique n-grams.
|
347 |
+
"""
|
348 |
+
)
|
349 |
+
|
350 |
+
with st.expander("Vocabulary"):
|
351 |
+
st.markdown(
|
352 |
+
"The table below shows all candidate n-grams that Wordify considered"
|
353 |
+
)
|
354 |
+
st.write(meta_data["vocabulary"])
|
355 |
+
|
356 |
+
with st.expander("Labels"):
|
357 |
+
st.markdown(
|
358 |
+
"The table below summarizes the labels that your file contained"
|
359 |
+
)
|
360 |
+
st.write(meta_data["labels"])
|
361 |
+
|
362 |
+
return subset_df
|
src/utils.py
CHANGED
@@ -68,7 +68,12 @@ def plot_labels_prop(data: pd.DataFrame, label_column: str):
|
|
68 |
|
69 |
return
|
70 |
|
71 |
-
source =
|
|
|
|
|
|
|
|
|
|
|
72 |
source["Props"] = source["Counts"] / source["Counts"].sum()
|
73 |
source["Proportions"] = (source["Props"].round(3) * 100).map("{:,.2f}".format) + "%"
|
74 |
|
@@ -81,7 +86,9 @@ def plot_labels_prop(data: pd.DataFrame, label_column: str):
|
|
81 |
)
|
82 |
)
|
83 |
|
84 |
-
text = bars.mark_text(align="center", baseline="middle", dy=15).encode(
|
|
|
|
|
85 |
|
86 |
return (bars + text).properties(height=300)
|
87 |
|
@@ -93,7 +100,9 @@ def plot_nchars(data: pd.DataFrame, text_column: str):
|
|
93 |
alt.Chart(source)
|
94 |
.mark_bar()
|
95 |
.encode(
|
96 |
-
alt.X(
|
|
|
|
|
97 |
alt.Y("count()", axis=alt.Axis(title="")),
|
98 |
)
|
99 |
)
|
@@ -103,7 +112,11 @@ def plot_nchars(data: pd.DataFrame, text_column: str):
|
|
103 |
|
104 |
def plot_score(data: pd.DataFrame, label_col: str, label: str):
|
105 |
|
106 |
-
source =
|
|
|
|
|
|
|
|
|
107 |
|
108 |
plot = (
|
109 |
alt.Chart(source)
|
|
|
68 |
|
69 |
return
|
70 |
|
71 |
+
source = (
|
72 |
+
data[label_column]
|
73 |
+
.value_counts()
|
74 |
+
.reset_index()
|
75 |
+
.rename(columns={"index": "Labels", label_column: "Counts"})
|
76 |
+
)
|
77 |
source["Props"] = source["Counts"] / source["Counts"].sum()
|
78 |
source["Proportions"] = (source["Props"].round(3) * 100).map("{:,.2f}".format) + "%"
|
79 |
|
|
|
86 |
)
|
87 |
)
|
88 |
|
89 |
+
text = bars.mark_text(align="center", baseline="middle", dy=15).encode(
|
90 |
+
text="Proportions:O"
|
91 |
+
)
|
92 |
|
93 |
return (bars + text).properties(height=300)
|
94 |
|
|
|
100 |
alt.Chart(source)
|
101 |
.mark_bar()
|
102 |
.encode(
|
103 |
+
alt.X(
|
104 |
+
f"{text_column}:Q", bin=True, axis=alt.Axis(title="# chars per text")
|
105 |
+
),
|
106 |
alt.Y("count()", axis=alt.Axis(title="")),
|
107 |
)
|
108 |
)
|
|
|
112 |
|
113 |
def plot_score(data: pd.DataFrame, label_col: str, label: str):
|
114 |
|
115 |
+
source = (
|
116 |
+
data.loc[data[label_col] == label]
|
117 |
+
.sort_values("score", ascending=False)
|
118 |
+
.head(100)
|
119 |
+
)
|
120 |
|
121 |
plot = (
|
122 |
alt.Chart(source)
|