Spaces:
Sleeping
Sleeping
File size: 7,716 Bytes
d39406e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"number of parameters: 29.94M\n",
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": []
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"import gradio as gr\n",
"import random\n",
"from config import device_type, ckpt_path, GPTConfig, GPT, encode, decode, ctx, num_samples, max_new_tokens, temperature, top_k\n",
"\n",
"checkpoint = torch.load(ckpt_path, map_location=device_type)\n",
"gptconf = GPTConfig(**checkpoint['model_args'])\n",
"model = GPT(gptconf)\n",
"state_dict = checkpoint['model']\n",
"unwanted_prefix = '_orig_mod.'\n",
"for k,v in list(state_dict.items()):\n",
" if k.startswith(unwanted_prefix):\n",
" state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)\n",
"model.load_state_dict(state_dict)\n",
"model.eval()\n",
"model.to(device_type)\n",
"\n",
"button_click = False\n",
"\n",
"def fn_query_on_load():\n",
" return \"in the air and\"\n",
"\n",
"num_samples = 1\n",
"def generate_commentary(start):\n",
" start_ids = encode(start)\n",
" x = (torch.tensor(start_ids, dtype=torch.long, device=device_type)[None, ...])\n",
"\n",
" out_text = ''\n",
" with torch.no_grad():\n",
" with ctx:\n",
" for k in range(num_samples):\n",
" y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)\n",
" out_text += decode(y[0].tolist())\n",
" out_text += '\\n-o-o-o-o-o-o-o-\\n\\n'\n",
"\n",
" return out_text\n",
" \n",
" \n",
"def fn_gen_comm(prompt, st, o1, o2, o3):\n",
" '''global button_click\n",
" if not button_click:\n",
" button_click = True\n",
" elif stat == -1:\n",
" button_click = False\n",
" return {\n",
" output1: output1,\n",
" output2: output2,\n",
" output3: output3,\n",
" stat: stat\n",
" }\n",
" \n",
" \n",
" out = generate_commentary(prompt)\n",
" if stat == -1:\n",
" return {\n",
" output1: out,\n",
" output2: None,\n",
" output3: None,\n",
" stat: 0\n",
" }\n",
" \n",
" elif stat == 0:\n",
" return {\n",
" output1: output1,\n",
" output2: out,\n",
" output3: None,\n",
" stat: 1\n",
" }\n",
" \n",
" elif stat == 2:\n",
" return {\n",
" output1: output1,\n",
" output2: output2,\n",
" output3: out,\n",
" stat: -1\n",
" }'''\n",
" \n",
" global button_click\n",
" if not button_click:\n",
" if st == -1:\n",
" button_click = True\n",
" elif st == -1:\n",
" button_click = False\n",
" return {\n",
" output1: o1,\n",
" output2: o2,\n",
" output3: o3,\n",
" stat: -1\n",
" }\n",
" elif st == 2:\n",
" button_click = False\n",
" return {\n",
" output1: o1,\n",
" output2: o2,\n",
" output3: o3,\n",
" stat: -1\n",
" }\n",
" \n",
" out = generate_commentary(prompt)\n",
" if st == -1:\n",
" return {\n",
" output1: out,\n",
" output2: None,\n",
" output3: None,\n",
" stat: 0\n",
" }\n",
" elif st == 0:\n",
" return {\n",
" output1: o1,\n",
" output2: out,\n",
" output3: None,\n",
" stat: 1\n",
" }\n",
" elif st == 1:\n",
" return {\n",
" output1: o1,\n",
" output2: o2,\n",
" output3: out,\n",
" stat: 2\n",
" }\n",
"\n",
"\n",
"with gr.Blocks() as app:\n",
" with gr.Row():\n",
" gr.Markdown(\n",
" \"\"\"\n",
" # NanoGPT - Cricket Commentary Generative AI\n",
" ### Give a prompt and see how it comes out with cricket commentary :)\n",
" \"\"\")\n",
"\n",
" with gr.Row(visible=True):\n",
" search_text = gr.Textbox(value=fn_query_on_load, placeholder='Enter prompt..', label='Enter Prompt')\n",
"\n",
" with gr.Row():\n",
" submit_btn = gr.Button(\"Submit\", variant='primary')\n",
" clear_btn = gr.ClearButton()\n",
" with gr.Row():\n",
" with gr.Column():\n",
" output1 = gr.Textbox(lines=10, interactive=False, label='Commentary Box')\n",
" output2 = gr.Textbox(lines=10, interactive=False, label='Commentary Box')\n",
" output3 = gr.Textbox(lines=10, interactive=False, label='Commentary Box')\n",
" stat = gr.State(value=-1)\n",
" \n",
"\n",
" def clear_data():\n",
" return {\n",
" output1: None,\n",
" output2: None,\n",
" output3: None,\n",
" search_text: None\n",
" }\n",
"\n",
" clear_btn.click(clear_data, None, [output1, output2, output3, search_text])\n",
"\n",
"\n",
" submit_btn.click(\n",
" fn_gen_comm,\n",
" [search_text, stat, output1, output2, output3],\n",
" [output1, output2, output3, stat]\n",
" )\n",
" \n",
" '''output1.change(\n",
" fn_gen_comm,\n",
" search_text,\n",
" [output1, output2, output3, stat]\n",
" )\n",
" \n",
" output2.change(\n",
" fn_gen_comm,\n",
" search_text,\n",
" [output1, output2, output3, stat]\n",
" )\n",
"\n",
" output3.change(\n",
" fn_gen_comm,\n",
" search_text,\n",
" [output1, output2, output3, stat]\n",
" )'''\n",
"\n",
"'''\n",
"Launch the app\n",
"'''\n",
"app.queue().launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
|