File size: 1,492 Bytes
a0702e3
f0b1c7a
 
 
91eef06
 
f0b1c7a
a0702e3
f0b1c7a
 
355826a
 
f0b1c7a
 
 
 
 
 
 
 
 
 
 
 
a0702e3
8bb4440
82e55f7
8bb4440
 
a0702e3
 
91eef06
f0b1c7a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from fastapi import FastAPI
from transformers import AutoTokenizer, AutoModel
import torch
from sklearn.metrics.pairwise import cosine_similarity
import logging

# Set up FastAPI app
app = FastAPI()

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-small-en-v1.5")
model = AutoModel.from_pretrained("BAAI/bge-small-en-v1.5")

# Precompute embeddings for labels
labels = ["Mathematics", "Language Arts", "Social Studies", "Science"]
label_embeddings = []

for label in labels:
    tokens = tokenizer(label, return_tensors="pt", padding=True, truncation=True)
    with torch.no_grad():
        embedding = model(**tokens).last_hidden_state.mean(dim=1)
    label_embeddings.append(embedding)

label_embeddings = torch.vstack(label_embeddings)

@app.get("/")
async def root():
    return {"message": "Welcome to the Zero-Shot Classification API"}

@app.post("/predict")
async def predict(data: dict):
    logging.info(f"Received data: {data}")
    text = data["data"][0]

    # Compute embedding for input text
    tokens = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    with torch.no_grad():
        text_embedding = model(**tokens).last_hidden_state.mean(dim=1)

    # Compute cosine similarity
    similarities = cosine_similarity(text_embedding, label_embeddings)[0]
    best_label_idx = similarities.argmax()
    best_label = labels[best_label_idx]

    logging.info(f"Prediction result: {best_label}")
    return {"label": best_label}