pollitoconpapass
commited on
Commit
·
f6632f4
1
Parent(s):
3cd9186
Add application file
Browse files- Dockerfile +18 -0
- app.py +28 -0
- docker-compose.yml +6 -0
- endpoint.py +20 -0
- requirements.txt +7 -0
Dockerfile
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12-slim
|
2 |
+
|
3 |
+
RUN apt-get update && apt-get install -y \
|
4 |
+
libsndfile1-dev \
|
5 |
+
build-essential \
|
6 |
+
libopenblas-dev \
|
7 |
+
&& rm -rf /var/lib/apt/lists/*
|
8 |
+
|
9 |
+
WORKDIR /app
|
10 |
+
|
11 |
+
COPY requirements.txt .
|
12 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
13 |
+
|
14 |
+
COPY . .
|
15 |
+
|
16 |
+
EXPOSE 8000
|
17 |
+
|
18 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000", "--log-level", "debug"]
|
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
|
5 |
+
pipe = pipeline(model="pollitoconpapass/whisper-small-finetuned")
|
6 |
+
|
7 |
+
def transcribe(audio):
|
8 |
+
text = pipe(audio)["text"]
|
9 |
+
return text
|
10 |
+
|
11 |
+
iface = gr.Interface(
|
12 |
+
fn=transcribe,
|
13 |
+
inputs=gr.Audio(type="filepath"),
|
14 |
+
outputs="text",
|
15 |
+
title="Whisper Small Demo - ZLTech",
|
16 |
+
description='''
|
17 |
+
Realtime demo of speech recognition fine-tuned using Whisper small model. New implementation: Quechua language.
|
18 |
+
|
19 |
+
|
20 |
+
If you want to use this as an endpoint, go to endpoint.py.
|
21 |
+
|
22 |
+
Source: https://huggingface.co/pollitoconpapass/whisper-small-finetuned
|
23 |
+
|
24 |
+
|
25 |
+
'''
|
26 |
+
)
|
27 |
+
|
28 |
+
iface.launch()
|
docker-compose.yml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: '3.12'
|
2 |
+
services:
|
3 |
+
whisper-api-dev:
|
4 |
+
build: .
|
5 |
+
ports:
|
6 |
+
- "8000:8000"
|
endpoint.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import uvicorn
|
3 |
+
import librosa
|
4 |
+
from transformers import pipeline
|
5 |
+
from fastapi import FastAPI, File, UploadFile
|
6 |
+
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
pipe = pipeline(model="pollitoconpapass/whisper-small-finetuned")
|
10 |
+
|
11 |
+
@app.post("/transcribe-whisper")
|
12 |
+
async def transcribe(audio: UploadFile = File(...)):
|
13 |
+
contents = await audio.read()
|
14 |
+
buffer = io.BytesIO(contents)
|
15 |
+
with buffer:
|
16 |
+
audio_array, _= librosa.load(buffer, sr=16000)
|
17 |
+
|
18 |
+
text = pipe(audio_array)["text"]
|
19 |
+
return {"text": text}
|
20 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
uvicorn==0.25.0
|
2 |
+
librosa==0.10.1
|
3 |
+
transformers==4.39.0
|
4 |
+
fastapi==0.108.0
|
5 |
+
soundfile==0.12.1
|
6 |
+
torch==2.3.0
|
7 |
+
python-multipart
|