Spaces:
Runtime error
Runtime error
File size: 4,002 Bytes
17d12d8 29e6656 7edc5be e1b0f65 f5e679e 03fd59b e1b0f65 5f853f6 03fd59b 5f853f6 03fd59b cf245ed 03fd59b d62b586 cf245ed 5f853f6 cf245ed 5f853f6 cf245ed 5f853f6 03fd59b cf245ed 237e24d cf245ed 36c549c cf245ed 36c549c c80b6f5 36c549c cf245ed 03fd59b f5e679e 03fd59b 5f853f6 03fd59b 5f853f6 03fd59b 5f853f6 03fd59b 088ef38 7b33051 088ef38 7b33051 088ef38 7b33051 cf245ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import torch
from openai import OpenAI
import os
from transformers import pipeline
from groq import Groq
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings.sentence_transformer import (
SentenceTransformerEmbeddings,
)
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import CharacterTextSplitter
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain.chains import RetrievalQA
from langchain_groq import ChatGroq
from dotenv import load_dotenv
load_dotenv()
groq_client = Groq(
api_key=os.environ.get("GROQ_API_KEY"),
)
def create_db_with_langchain(path):
loader = PyMuPDFLoader(path)
data = loader.load()
# split it into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(data)
# create the open-source embedding function
embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# load it into Chroma
db = Chroma.from_documents(docs, embedding_function)
return db
def generate_groq_rag(text, model, path):
llm = ChatGroq(
temperature=0,
model_name=model,
)
db = create_db_with_langchain(path)
retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": 4, "fetch_k": 20})
prompt = hub.pull("rlm/rag-prompt")
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
rag_chain = {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm
return rag_chain.invoke(text).content
def generate_groq_base(text, model):
completion = groq_client.chat.completions.create(
model=model,
messages=[
{"role": "user", "content": text},
{
"role": "assistant",
"content": "Please follow the instruction and write about the given topic in approximately the given number of words",
},
],
temperature=1,
max_tokens=1024,
top_p=1,
stream=True,
stop=None,
)
response = ""
for i, chunk in enumerate(completion):
if i != 0:
response += chunk.choices[0].delta.content or ""
return response
def generate_groq(text, model, path):
if path:
return generate_groq_rag(text, model, path)
else:
return generate_groq_base(text, model)
def generate_openai(text, model, openai_client):
message = [{"role": "user", "content": text}]
response = openai_client.chat.completions.create(
model=model, messages=message, temperature=0.2, max_tokens=800, frequency_penalty=0.0
)
return response.choices[0].message.content
def generate(text, model, path, api):
if model == "Llama 3":
return generate_groq(text, "llama3-70b-8192", path)
elif model == "Groq":
return generate_groq(text, "llama3-groq-70b-8192-tool-use-preview", path)
elif model == "Mistral":
return generate_groq(text, "mixtral-8x7b-32768", path)
elif model == "Gemma":
return generate_groq(text, "gemma2-9b-it", path)
elif model == "OpenAI GPT 3.5":
try:
openai_client = OpenAI(api_key=api)
return generate_openai(text, "gpt-3.5-turbo", openai_client)
except:
return "Please add a valid API key"
elif model == "OpenAI GPT 4":
try:
openai_client = OpenAI(api_key=api)
return generate_openai(text, "gpt-4-turbo", openai_client)
except:
return "Please add a valid API key"
elif model == "OpenAI GPT 4o":
try:
openai_client = OpenAI(api_key=api)
return generate_openai(text, "gpt-4o", openai_client)
except:
return "Please add a valid API key"
|