File size: 15,673 Bytes
20dc449
 
 
 
 
 
d994b45
20dc449
d994b45
20dc449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d994b45
20dc449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d994b45
20dc449
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import openai
import gradio as gr
from typing import Dict, List
import re
from humanize import paraphrase_text
from ai_generate import generate
import requests
from gptzero_free import GPT2PPL


def clean_text(text: str) -> str:
    paragraphs = text.split('\n\n')
    cleaned_paragraphs = []
    for paragraph in paragraphs:
        cleaned = re.sub(r'\s+', ' ', paragraph).strip()
        cleaned = re.sub(r'(?<=\.) ([a-z])', lambda x: x.group(1).upper(), cleaned)
        cleaned_paragraphs.append(cleaned)
    return '\n'.join(cleaned_paragraphs)

def format_and_correct(text: str) -> str:
    """Correct formatting and grammar without changing content significantly."""
    prompt = f"""
    Please correct the formatting, grammar, and spelling errors in the following text without changing its content significantly. Ensure proper paragraph breaks and maintain the original content:
    {text}
    """
    corrected_text = generate(prompt, "Groq", None) 
    return clean_text(corrected_text)


def generate_prompt(settings: Dict[str, str]) -> str:
    """Generate a detailed prompt based on user settings."""
    prompt = f"""
    Write a {settings['article_length']} {settings['format']} on {settings['topic']}.
    
    Style and Tone:
    - Writing style: {settings['writing_style']}
    - Tone: {settings['tone']}
    - Target audience: {settings['user_category']}
    
    Content:
    - Depth: {settings['depth_of_content']}
    - Structure: {', '.join(settings['structure'])}
    
    Keywords to incorporate:
    {', '.join(settings['keywords'])}
    
    Additional requirements:
    - Include {settings['num_examples']} relevant examples or case studies
    - Incorporate data or statistics from {', '.join(settings['references'])}
    - End with a {settings['conclusion_type']} conclusion
    - Add a "References" section at the end with at least 3 credible sources, formatted as [1], [2], etc.
    - Do not make any headline, title bold.
    
    Ensure proper paragraph breaks for better readability.
    Avoid any references to artificial intelligence, language models, or the fact that this is generated by an AI, and do not mention something like here is the article etc.
    """
    return prompt

def generate_article(
    topic: str,
    keywords: str,
    article_length: str,
    format: str,
    writing_style: str,
    tone: str,
    user_category: str,
    depth_of_content: str,
    structure: str,
    references: str,
    num_examples: str,
    conclusion_type: str,
    ai_model: str,
    api_key: str = None
) -> str:
    """Generate an article based on user-defined settings."""
    settings = {
        "topic": topic,
        "keywords": [k.strip() for k in keywords.split(',')],
        "article_length": article_length,
        "format": format,
        "writing_style": writing_style,
        "tone": tone,
        "user_category": user_category,
        "depth_of_content": depth_of_content,
        "structure": [s.strip() for s in structure.split(',')],
        "references": [r.strip() for r in references.split(',')],
        "num_examples": num_examples,
        "conclusion_type": conclusion_type
    }
    
    prompt = generate_prompt(settings)
    
    if ai_model in ['OpenAI GPT 3.5', 'OpenAI GPT 4']:
        response = openai.ChatCompletion.create(
            model="gpt-4" if ai_model == 'OpenAI GPT 4' else "gpt-3.5-turbo",
            messages=[
                {"role": "system", "content": "You are a professional content writer with expertise in various fields."},
                {"role": "user", "content": prompt}
            ],
            max_tokens=3000,
            n=1,
            stop=None,
            temperature=0.7,
        )
        article = response.choices[0].message.content.strip()
    else:
        article = generate(prompt, ai_model, api_key)
    
    return clean_text(article)

def humanize(
    text: str,    
    model: str, 
    temperature: float = 1.2, 
    repetition_penalty: float = 1,
    top_k: int = 50,
    length_penalty: float = 1
) -> str:
    result = paraphrase_text(
        text=text,
        model_name=model,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        top_k=top_k,
        length_penalty=length_penalty,
    )
    return format_and_correct(result)

ai_check_options = [
    "Polygraf AI",
    # "Sapling AI",
    "GPTZero"
]

def ai_generated_test_polygraf(text: str) -> Dict:
    url = "http://34.66.10.188/ai-vs-human"
    access_key = "6mcemwsFycVVgVjMFwKXki3zJka1r7N4u$Z0Y|x$gecC$hdNtpQf-SpL0+=k;u%BZ" 
    headers = {
        "ACCESS_KEY": access_key
    }
    data = {
    "text" : f"{text}"
    }
    response = requests.post(url, headers=headers, json=data)
    return response.json()

def ai_generated_test_sapling(text: str) -> Dict:
    response = requests.post(
        "https://api.sapling.ai/api/v1/aidetect",
        json={
            "key": "60L9BPSVPIIOEZM0CD1DQWRBPJIUR7SB",
            "text": f"{text}"
        }
    )
    return { "AI" : response.json()['score'], "HUMAN" : 1 - response.json()['score']}


def ai_generated_test_gptzero(text):
    gptzero_model = GPT2PPL()
    result = gptzero_model(text)
    print(result)
    return result

def ai_check(text: str, option: str) -> Dict:
    if option == 'Polygraf AI':
        return ai_generated_test_polygraf(text)
    elif option == 'Sapling AI':
        return ai_generated_test_sapling(text)
    elif option == "GPTZero":
        return ai_generated_test_gptzero(text)
    else:
        return ai_generated_test_polygraf(text)

def update_visibility_api(model: str):
    if model in ['OpenAI GPT 3.5', 'OpenAI GPT 4']:
        return gr.update(visible=True)
    else:
        return gr.update(visible=False)

def format_references(text: str) -> str:
    """Extract and format references from the generated text."""
    lines = text.split('\n')
    references = []
    article_text = []
    in_references = False
    
    for line in lines:
        if line.strip().lower() == "references":
            in_references = True
            continue
        if in_references:
            references.append(line.strip())
        else:
            article_text.append(line)
    
    formatted_refs = []
    for i, ref in enumerate(references, 1):
        formatted_refs.append(f"[{i}] {ref}\n")
        
    return "\n\n".join(article_text) + "\n\nReferences:\n" + "\n".join(formatted_refs)

def generate_and_format(
    topic, keywords, article_length, format, writing_style, tone, user_category,
    depth_of_content, structure, references, num_examples, conclusion_type, ai_model, api_key
):
    article = generate_article(
        topic, keywords, article_length, format, writing_style, tone, user_category,
        depth_of_content, structure, references, num_examples, conclusion_type, ai_model, api_key
    )
    return format_references(article)

def copy_to_input(text):
    return text

def create_interface():
    with gr.Blocks(theme=gr.themes.Default(
        primary_hue=gr.themes.colors.pink,
        secondary_hue=gr.themes.colors.yellow,
        neutral_hue=gr.themes.colors.gray
    )) as demo:
        gr.Markdown("# Polygraf AI Content Writer", elem_classes="text-center text-3xl mb-6")
        
        with gr.Row():
            with gr.Column(scale=2):
                with gr.Group():
                    gr.Markdown("## Article Configuration", elem_classes="text-xl mb-4")
                    input_topic = gr.Textbox(label="Topic", placeholder="Enter the main topic of your article", elem_classes="input-highlight-pink")
                    input_keywords = gr.Textbox(label="Keywords", placeholder="Enter comma-separated keywords", elem_classes="input-highlight-yellow")
                    
                    with gr.Row():
                        input_format = gr.Dropdown(
                            choices=['Article', 'Essay', 'Blog post', 'Report', 'Research paper', 'News article', 'White paper'],
                            value='Article',
                            label="Format",
                            elem_classes="input-highlight-turquoise"
                        )
                        input_length = gr.Dropdown(
                            choices=["Short (500 words)", "Medium (1000 words)", "Long (2000+ words)", "Very Long (3000+ words)"],
                            value="Medium (1000 words)",
                            label="Article Length",
                            elem_classes="input-highlight-pink"
                        )
                    
                    with gr.Row():
                        input_writing_style = gr.Dropdown(
                            choices=["Formal", "Informal", "Technical", "Conversational", "Journalistic", "Academic", "Creative"],
                            value="Formal",
                            label="Writing Style",
                            elem_classes="input-highlight-yellow"
                        )
                        input_tone = gr.Dropdown(
                            choices=["Friendly", "Professional", "Neutral", "Enthusiastic", "Skeptical", "Humorous"],
                            value="Professional",
                            label="Tone",
                            elem_classes="input-highlight-turquoise"
                        )
                    
                    input_user_category = gr.Dropdown(
                        choices=["Students", "Professionals", "Researchers", "General Public", "Policymakers", "Entrepreneurs"],
                        value="General Public",
                        label="Target Audience",
                        elem_classes="input-highlight-pink"
                    )
                    input_depth = gr.Dropdown(
                        choices=["Surface-level overview", "Moderate analysis", "In-depth research", "Comprehensive study"],
                        value="Moderate analysis",
                        label="Depth of Content",
                        elem_classes="input-highlight-yellow"
                    )
                    input_structure = gr.Dropdown(
                        choices=[
                            "Introduction, Body, Conclusion",
                            "Abstract, Introduction, Methods, Results, Discussion, Conclusion",
                            "Executive Summary, Problem Statement, Analysis, Recommendations, Conclusion",
                            "Introduction, Literature Review, Methodology, Findings, Analysis, Conclusion"
                        ],
                        value="Introduction, Body, Conclusion",
                        label="Structure",
                        elem_classes="input-highlight-turquoise"
                    )
                    input_references = gr.Dropdown(
                        choices=["Academic journals", "Industry reports", "Government publications", "News outlets", "Expert interviews", "Case studies"],
                        value="News outlets",
                        label="References",
                        elem_classes="input-highlight-pink"
                    )
                    input_num_examples = gr.Dropdown(
                        choices=["1-2", "3-4", "5+"],
                        value="1-2",
                        label="Number of Examples/Case Studies",
                        elem_classes="input-highlight-yellow"
                    )
                    input_conclusion = gr.Dropdown(
                        choices=["Summary", "Call to Action", "Future Outlook", "Thought-provoking Question"],
                        value="Summary",
                        label="Conclusion Type",
                        elem_classes="input-highlight-turquoise"
                    )
                
                with gr.Group():
                    gr.Markdown("## AI Model Configuration", elem_classes="text-xl mb-4")
                    ai_generator = gr.Dropdown(
                        choices=['Llama 3', 'Groq', 'Mistral', 'Gemma', 'OpenAI GPT 3.5', 'OpenAI GPT 4'],
                        value='Llama 3',
                        label="AI Model",
                        elem_classes="input-highlight-pink"
                    )
                    input_api = gr.Textbox(label="API Key", visible=False)
                    ai_generator.change(update_visibility_api, ai_generator, input_api)
                
                generate_btn = gr.Button("Generate Article", variant="primary")
            
            with gr.Column(scale=3):
                output_article = gr.Textbox(label="Generated Article", lines=20)
                
                with gr.Row():
                    with gr.Column():
                        ai_detector_dropdown = gr.Radio(
                            choices=ai_check_options, label="Select AI Detector", value="Polygraf AI")
                        ai_check_btn = gr.Button("AI Check")
                    ai_check_result = gr.Label(label="AI Check Result")
                
                humanize_btn = gr.Button("Humanize")
                humanized_output = gr.Textbox(label="Humanized Article", lines=20)
                copy_to_input_btn = gr.Button("Copy to Input for AI Check")
        
        with gr.Accordion("Advanced Humanizer Settings", open=False):
            with gr.Row():
                model_dropdown = gr.Radio(
                    choices=[
                        "Base Model",
                        "Large Model",
                        "XL Model",
                        # "XL Law Model",
                        # "XL Marketing Model",
                        # "XL Child Style Model",
                    ], 
                    value="Large Model",
                    label="Humanizer Model Version"
                )
            with gr.Row():
                temperature_slider = gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.2, label="Temperature")
                top_k_slider = gr.Slider(minimum=0, maximum=300, step=25, value=50, label="Top k")
            with gr.Row():
                repetition_penalty_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1, label="Repetition Penalty")
                length_penalty_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Length Penalty")

        generate_btn.click(
            fn=generate_and_format,
            inputs=[
                input_topic, 
                input_keywords,
                input_length,
                input_format,
                input_writing_style,
                input_tone,
                input_user_category,
                input_depth,
                input_structure,
                input_references,
                input_num_examples,
                input_conclusion,
                ai_generator,
                input_api
            ],
            outputs=[output_article],
        )

        ai_check_btn.click(
            fn=ai_check,
            inputs=[output_article, ai_detector_dropdown],
            outputs=[ai_check_result],
        )

        humanize_btn.click(
            fn=humanize,
            inputs=[
                output_article,
                model_dropdown,
                temperature_slider,
                repetition_penalty_slider,
                top_k_slider,
                length_penalty_slider,
            ],
            outputs=[humanized_output],
        )

        copy_to_input_btn.click(
            fn=copy_to_input,
            inputs=[humanized_output],
            outputs=[output_article],
        )

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(server_name="0.0.0.0", share=True)