Spaces:
Runtime error
Runtime error
File size: 15,673 Bytes
20dc449 d994b45 20dc449 d994b45 20dc449 d994b45 20dc449 d994b45 20dc449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import openai
import gradio as gr
from typing import Dict, List
import re
from humanize import paraphrase_text
from ai_generate import generate
import requests
from gptzero_free import GPT2PPL
def clean_text(text: str) -> str:
paragraphs = text.split('\n\n')
cleaned_paragraphs = []
for paragraph in paragraphs:
cleaned = re.sub(r'\s+', ' ', paragraph).strip()
cleaned = re.sub(r'(?<=\.) ([a-z])', lambda x: x.group(1).upper(), cleaned)
cleaned_paragraphs.append(cleaned)
return '\n'.join(cleaned_paragraphs)
def format_and_correct(text: str) -> str:
"""Correct formatting and grammar without changing content significantly."""
prompt = f"""
Please correct the formatting, grammar, and spelling errors in the following text without changing its content significantly. Ensure proper paragraph breaks and maintain the original content:
{text}
"""
corrected_text = generate(prompt, "Groq", None)
return clean_text(corrected_text)
def generate_prompt(settings: Dict[str, str]) -> str:
"""Generate a detailed prompt based on user settings."""
prompt = f"""
Write a {settings['article_length']} {settings['format']} on {settings['topic']}.
Style and Tone:
- Writing style: {settings['writing_style']}
- Tone: {settings['tone']}
- Target audience: {settings['user_category']}
Content:
- Depth: {settings['depth_of_content']}
- Structure: {', '.join(settings['structure'])}
Keywords to incorporate:
{', '.join(settings['keywords'])}
Additional requirements:
- Include {settings['num_examples']} relevant examples or case studies
- Incorporate data or statistics from {', '.join(settings['references'])}
- End with a {settings['conclusion_type']} conclusion
- Add a "References" section at the end with at least 3 credible sources, formatted as [1], [2], etc.
- Do not make any headline, title bold.
Ensure proper paragraph breaks for better readability.
Avoid any references to artificial intelligence, language models, or the fact that this is generated by an AI, and do not mention something like here is the article etc.
"""
return prompt
def generate_article(
topic: str,
keywords: str,
article_length: str,
format: str,
writing_style: str,
tone: str,
user_category: str,
depth_of_content: str,
structure: str,
references: str,
num_examples: str,
conclusion_type: str,
ai_model: str,
api_key: str = None
) -> str:
"""Generate an article based on user-defined settings."""
settings = {
"topic": topic,
"keywords": [k.strip() for k in keywords.split(',')],
"article_length": article_length,
"format": format,
"writing_style": writing_style,
"tone": tone,
"user_category": user_category,
"depth_of_content": depth_of_content,
"structure": [s.strip() for s in structure.split(',')],
"references": [r.strip() for r in references.split(',')],
"num_examples": num_examples,
"conclusion_type": conclusion_type
}
prompt = generate_prompt(settings)
if ai_model in ['OpenAI GPT 3.5', 'OpenAI GPT 4']:
response = openai.ChatCompletion.create(
model="gpt-4" if ai_model == 'OpenAI GPT 4' else "gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a professional content writer with expertise in various fields."},
{"role": "user", "content": prompt}
],
max_tokens=3000,
n=1,
stop=None,
temperature=0.7,
)
article = response.choices[0].message.content.strip()
else:
article = generate(prompt, ai_model, api_key)
return clean_text(article)
def humanize(
text: str,
model: str,
temperature: float = 1.2,
repetition_penalty: float = 1,
top_k: int = 50,
length_penalty: float = 1
) -> str:
result = paraphrase_text(
text=text,
model_name=model,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_k=top_k,
length_penalty=length_penalty,
)
return format_and_correct(result)
ai_check_options = [
"Polygraf AI",
# "Sapling AI",
"GPTZero"
]
def ai_generated_test_polygraf(text: str) -> Dict:
url = "http://34.66.10.188/ai-vs-human"
access_key = "6mcemwsFycVVgVjMFwKXki3zJka1r7N4u$Z0Y|x$gecC$hdNtpQf-SpL0+=k;u%BZ"
headers = {
"ACCESS_KEY": access_key
}
data = {
"text" : f"{text}"
}
response = requests.post(url, headers=headers, json=data)
return response.json()
def ai_generated_test_sapling(text: str) -> Dict:
response = requests.post(
"https://api.sapling.ai/api/v1/aidetect",
json={
"key": "60L9BPSVPIIOEZM0CD1DQWRBPJIUR7SB",
"text": f"{text}"
}
)
return { "AI" : response.json()['score'], "HUMAN" : 1 - response.json()['score']}
def ai_generated_test_gptzero(text):
gptzero_model = GPT2PPL()
result = gptzero_model(text)
print(result)
return result
def ai_check(text: str, option: str) -> Dict:
if option == 'Polygraf AI':
return ai_generated_test_polygraf(text)
elif option == 'Sapling AI':
return ai_generated_test_sapling(text)
elif option == "GPTZero":
return ai_generated_test_gptzero(text)
else:
return ai_generated_test_polygraf(text)
def update_visibility_api(model: str):
if model in ['OpenAI GPT 3.5', 'OpenAI GPT 4']:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def format_references(text: str) -> str:
"""Extract and format references from the generated text."""
lines = text.split('\n')
references = []
article_text = []
in_references = False
for line in lines:
if line.strip().lower() == "references":
in_references = True
continue
if in_references:
references.append(line.strip())
else:
article_text.append(line)
formatted_refs = []
for i, ref in enumerate(references, 1):
formatted_refs.append(f"[{i}] {ref}\n")
return "\n\n".join(article_text) + "\n\nReferences:\n" + "\n".join(formatted_refs)
def generate_and_format(
topic, keywords, article_length, format, writing_style, tone, user_category,
depth_of_content, structure, references, num_examples, conclusion_type, ai_model, api_key
):
article = generate_article(
topic, keywords, article_length, format, writing_style, tone, user_category,
depth_of_content, structure, references, num_examples, conclusion_type, ai_model, api_key
)
return format_references(article)
def copy_to_input(text):
return text
def create_interface():
with gr.Blocks(theme=gr.themes.Default(
primary_hue=gr.themes.colors.pink,
secondary_hue=gr.themes.colors.yellow,
neutral_hue=gr.themes.colors.gray
)) as demo:
gr.Markdown("# Polygraf AI Content Writer", elem_classes="text-center text-3xl mb-6")
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
gr.Markdown("## Article Configuration", elem_classes="text-xl mb-4")
input_topic = gr.Textbox(label="Topic", placeholder="Enter the main topic of your article", elem_classes="input-highlight-pink")
input_keywords = gr.Textbox(label="Keywords", placeholder="Enter comma-separated keywords", elem_classes="input-highlight-yellow")
with gr.Row():
input_format = gr.Dropdown(
choices=['Article', 'Essay', 'Blog post', 'Report', 'Research paper', 'News article', 'White paper'],
value='Article',
label="Format",
elem_classes="input-highlight-turquoise"
)
input_length = gr.Dropdown(
choices=["Short (500 words)", "Medium (1000 words)", "Long (2000+ words)", "Very Long (3000+ words)"],
value="Medium (1000 words)",
label="Article Length",
elem_classes="input-highlight-pink"
)
with gr.Row():
input_writing_style = gr.Dropdown(
choices=["Formal", "Informal", "Technical", "Conversational", "Journalistic", "Academic", "Creative"],
value="Formal",
label="Writing Style",
elem_classes="input-highlight-yellow"
)
input_tone = gr.Dropdown(
choices=["Friendly", "Professional", "Neutral", "Enthusiastic", "Skeptical", "Humorous"],
value="Professional",
label="Tone",
elem_classes="input-highlight-turquoise"
)
input_user_category = gr.Dropdown(
choices=["Students", "Professionals", "Researchers", "General Public", "Policymakers", "Entrepreneurs"],
value="General Public",
label="Target Audience",
elem_classes="input-highlight-pink"
)
input_depth = gr.Dropdown(
choices=["Surface-level overview", "Moderate analysis", "In-depth research", "Comprehensive study"],
value="Moderate analysis",
label="Depth of Content",
elem_classes="input-highlight-yellow"
)
input_structure = gr.Dropdown(
choices=[
"Introduction, Body, Conclusion",
"Abstract, Introduction, Methods, Results, Discussion, Conclusion",
"Executive Summary, Problem Statement, Analysis, Recommendations, Conclusion",
"Introduction, Literature Review, Methodology, Findings, Analysis, Conclusion"
],
value="Introduction, Body, Conclusion",
label="Structure",
elem_classes="input-highlight-turquoise"
)
input_references = gr.Dropdown(
choices=["Academic journals", "Industry reports", "Government publications", "News outlets", "Expert interviews", "Case studies"],
value="News outlets",
label="References",
elem_classes="input-highlight-pink"
)
input_num_examples = gr.Dropdown(
choices=["1-2", "3-4", "5+"],
value="1-2",
label="Number of Examples/Case Studies",
elem_classes="input-highlight-yellow"
)
input_conclusion = gr.Dropdown(
choices=["Summary", "Call to Action", "Future Outlook", "Thought-provoking Question"],
value="Summary",
label="Conclusion Type",
elem_classes="input-highlight-turquoise"
)
with gr.Group():
gr.Markdown("## AI Model Configuration", elem_classes="text-xl mb-4")
ai_generator = gr.Dropdown(
choices=['Llama 3', 'Groq', 'Mistral', 'Gemma', 'OpenAI GPT 3.5', 'OpenAI GPT 4'],
value='Llama 3',
label="AI Model",
elem_classes="input-highlight-pink"
)
input_api = gr.Textbox(label="API Key", visible=False)
ai_generator.change(update_visibility_api, ai_generator, input_api)
generate_btn = gr.Button("Generate Article", variant="primary")
with gr.Column(scale=3):
output_article = gr.Textbox(label="Generated Article", lines=20)
with gr.Row():
with gr.Column():
ai_detector_dropdown = gr.Radio(
choices=ai_check_options, label="Select AI Detector", value="Polygraf AI")
ai_check_btn = gr.Button("AI Check")
ai_check_result = gr.Label(label="AI Check Result")
humanize_btn = gr.Button("Humanize")
humanized_output = gr.Textbox(label="Humanized Article", lines=20)
copy_to_input_btn = gr.Button("Copy to Input for AI Check")
with gr.Accordion("Advanced Humanizer Settings", open=False):
with gr.Row():
model_dropdown = gr.Radio(
choices=[
"Base Model",
"Large Model",
"XL Model",
# "XL Law Model",
# "XL Marketing Model",
# "XL Child Style Model",
],
value="Large Model",
label="Humanizer Model Version"
)
with gr.Row():
temperature_slider = gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.2, label="Temperature")
top_k_slider = gr.Slider(minimum=0, maximum=300, step=25, value=50, label="Top k")
with gr.Row():
repetition_penalty_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1, label="Repetition Penalty")
length_penalty_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Length Penalty")
generate_btn.click(
fn=generate_and_format,
inputs=[
input_topic,
input_keywords,
input_length,
input_format,
input_writing_style,
input_tone,
input_user_category,
input_depth,
input_structure,
input_references,
input_num_examples,
input_conclusion,
ai_generator,
input_api
],
outputs=[output_article],
)
ai_check_btn.click(
fn=ai_check,
inputs=[output_article, ai_detector_dropdown],
outputs=[ai_check_result],
)
humanize_btn.click(
fn=humanize,
inputs=[
output_article,
model_dropdown,
temperature_slider,
repetition_penalty_slider,
top_k_slider,
length_penalty_slider,
],
outputs=[humanized_output],
)
copy_to_input_btn.click(
fn=copy_to_input,
inputs=[humanized_output],
outputs=[output_article],
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(server_name="0.0.0.0", share=True) |