File size: 4,845 Bytes
7edc5be
03fd59b
708f094
03fd59b
 
 
708f094
03fd59b
8f26ea6
03fd59b
 
8f26ea6
03fd59b
4b92a71
 
 
03fd59b
134b51f
03fd59b
e1b0f65
8f26ea6
f716a54
 
 
8f26ea6
59fbf6a
 
 
 
 
708f094
 
 
 
 
 
 
4b92a71
 
708f094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134b51f
708f094
43d4e83
59fbf6a
03fd59b
708f094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59fbf6a
 
 
 
708f094
43d4e83
03fd59b
 
 
708f094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59fbf6a
708f094
03fd59b
 
 
 
708f094
 
 
 
f716a54
708f094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b92a71
708f094
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_core.documents import Document
from langchain_community.embeddings.sentence_transformer import (
    SentenceTransformerEmbeddings,
)
from langchain.schema import StrOutputParser
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_anthropic import ChatAnthropic
from dotenv import load_dotenv

load_dotenv()

# suppress grpc and glog logs for gemini
os.environ["GRPC_VERBOSITY"] = "ERROR"
os.environ["GLOG_minloglevel"] = "2"

# RAG parameters
CHUNK_SIZE = 1024
CHUNK_OVERLAP = CHUNK_SIZE // 8
K = 10
FETCH_K = 20

llm_model_translation = {
    "LLaMA 3": "llama3-70b-8192",
    "OpenAI GPT 4o Mini": "gpt-4o-mini",
    "OpenAI GPT 4o": "gpt-4o",
    "OpenAI GPT 4": "gpt-4-turbo",
    "Gemini 1.5 Pro": "gemini-1.5-pro",
    "Claude Sonnet 3.5": "claude-3-5-sonnet-20240620",
}

llm_classes = {
    "llama3-70b-8192": ChatGroq,
    "gpt-4o-mini": ChatOpenAI,
    "gpt-4o": ChatOpenAI,
    "gpt-4-turbo": ChatOpenAI,
    "gemini-1.5-pro": ChatGoogleGenerativeAI,
    "claude-3-5-sonnet-20240620": ChatAnthropic,
}


def load_llm(model: str, api_key: str, temperature: float = 1.0, max_length: int = 2048):
    model_name = llm_model_translation.get(model)
    llm_class = llm_classes.get(model_name)
    if not llm_class:
        raise ValueError(f"Model {model} not supported.")
    try:
        llm = llm_class(model_name=model_name, temperature=temperature, max_tokens=max_length)
    except Exception as e:
        print(f"An error occurred: {e}")
        llm = None
    return llm


def create_db_with_langchain(path: list[str], url_content: dict):
    all_docs = []
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
    embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
    if path:
        for file in path:
            loader = PyMuPDFLoader(file)
            data = loader.load()
            # split it into chunks
            docs = text_splitter.split_documents(data)
            all_docs.extend(docs)

    if url_content:
        for url, content in url_content.items():
            doc = Document(page_content=content, metadata={"source": url})
            # split it into chunks
            docs = text_splitter.split_documents([doc])
            all_docs.extend(docs)

    # print docs
    for idx, doc in enumerate(all_docs):
        print(f"Doc: {idx} | Length = {len(doc.page_content)}")

    assert len(all_docs) > 0, "No PDFs or scrapped data provided"
    db = Chroma.from_documents(all_docs, embedding_function)
    return db


def generate_rag(
    prompt: str,
    topic: str,
    model: str,
    url_content: dict,
    path: list[str],
    temperature: float = 1.0,
    max_length: int = 2048,
    api_key: str = "",
    sys_message="",
):
    llm = load_llm(model, api_key, temperature, max_length)
    if llm is None:
        print("Failed to load LLM. Aborting operation.")
        return None
    db = create_db_with_langchain(path, url_content)
    retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": K, "fetch_k": FETCH_K})
    rag_prompt = hub.pull("rlm/rag-prompt")

    def format_docs(docs):
        return "\n\n".join(doc.page_content for doc in docs)

    docs = retriever.get_relevant_documents(topic)
    formatted_docs = format_docs(docs)
    rag_chain = (
        {"context": lambda _: formatted_docs, "question": RunnablePassthrough()} | rag_prompt | llm | StrOutputParser()
    )
    return rag_chain.invoke(prompt)


def generate_base(
    prompt: str, topic: str, model: str, temperature: float, max_length: int, api_key: str, sys_message=""
):
    llm = load_llm(model, api_key, temperature, max_length)
    if llm is None:
        print("Failed to load LLM. Aborting operation.")
        return None
    try:
        output = llm.invoke(prompt).content
        return output
    except Exception as e:
        print(f"An error occurred while running the model: {e}")
        return None


def generate(
    prompt: str,
    topic: str,
    model: str,
    url_content: dict,
    path: list[str],
    temperature: float = 1.0,
    max_length: int = 2048,
    api_key: str = "",
    sys_message="",
):
    if path or url_content:
        return generate_rag(prompt, topic, model, url_content, path, temperature, max_length, api_key, sys_message)
    else:
        return generate_base(prompt, topic, model, temperature, max_length, api_key, sys_message)