Spaces:
Runtime error
Runtime error
File size: 24,707 Bytes
20dc449 d31c634 20dc449 cfcd65e 86218e7 d994b45 291ffbc 132b0ec e3277bc 132b0ec e3277bc 132b0ec 118507a d994b45 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 6402181 291ffbc 132b0ec 20dc449 7454788 132b0ec 118507a 7454788 20dc449 cf245ed 7454788 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 7454788 20dc449 cf245ed 7454788 cf245ed 7454788 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 86218e7 46f0706 cf245ed 20dc449 cf245ed 20dc449 46f0706 20dc449 46f0706 291ffbc d994b45 20dc449 cf245ed cc2969a 20dc449 cf245ed 20dc449 cf245ed 20dc449 118507a 20dc449 cf245ed 20dc449 118507a 20dc449 cf245ed 20dc449 cf245ed 7454788 20dc449 cf245ed 7454788 20dc449 cf245ed 7454788 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed f8ec92b 20dc449 cf245ed 20dc449 cf245ed e9640b0 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 20dc449 cf245ed 57a32cd 20dc449 7454788 20dc449 132b0ec cf245ed 20dc449 57a32cd 20dc449 291ffbc 741a6fd 20dc449 cf245ed 7454788 e3277bc 7454788 20dc449 d994b45 cf245ed 20dc449 5c509dc 20dc449 eb115c6 cf245ed d994b45 20dc449 d994b45 e3277bc 7454788 d994b45 20dc449 e3277bc 20dc449 d994b45 20dc449 46f0706 afad1bb 20dc449 afad1bb 20dc449 afad1bb 20dc449 d994b45 20dc449 d994b45 cf245ed afad1bb 20dc449 132b0ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
import openai
import gradio as gr
from typing import Dict, List
import re
from humanize import paraphrase_text
from ai_generate import generate
import requests
import language_tool_python
import torch
from gradio_client import Client
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from scipy.special import softmax
from collections import defaultdict
import nltk
from utils import remove_special_characters
# Check if CUDA is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
models = {
'Polygraf AI Watson (Base Model)': AutoModelForSequenceClassification.from_pretrained('polygraf-ai/bc-roberta-openai-2sent').to(device),
'Polygraf AI Sherlock (Advanced Model)': AutoModelForSequenceClassification.from_pretrained('polygraf-ai/bc_combined_3sent').to(device),
}
tokenizers = {
'Polygraf AI Watson (Base Model)': AutoTokenizer.from_pretrained('polygraf-ai/bc-roberta-openai-2sent'),
'Polygraf AI Sherlock (Advanced Model)': AutoTokenizer.from_pretrained('polygraf-ai/bc_combined_3sent'),
}
# Function to move model to the appropriate device
def to_device(model):
return model.to(device)
def copy_to_input(text):
return text
def remove_bracketed_numbers(text):
pattern = r"^\[\d+\]"
cleaned_text = re.sub(pattern, "", text)
return cleaned_text
def clean_text(text: str) -> str:
paragraphs = text.split("\n\n")
cleaned_paragraphs = []
for paragraph in paragraphs:
cleaned = re.sub(r"\s+", " ", paragraph).strip()
cleaned = re.sub(r"(?<=\.) ([a-z])", lambda x: x.group(1).upper(), cleaned)
cleaned_paragraphs.append(cleaned)
return "\n".join(cleaned_paragraphs)
def format_and_correct(text: str) -> str:
prompt = f"""
Please correct the formatting, grammar, and spelling errors in the following text without changing its content significantly. Ensure proper paragraph breaks and maintain the original content:
{text}
"""
corrected_text = generate(prompt, "Groq", None)
return clean_text(corrected_text)
def format_and_correct_para(text: str) -> str:
paragraphs = text.split("\n")
corrected_paragraphs = []
for paragraph in paragraphs:
corrected = format_and_correct(paragraph)
corrected_paragraphs.append(corrected)
corrected_text = "\n\n".join(corrected_paragraphs)
return corrected_text
def format_and_correct_language_check(text: str) -> str:
tool = language_tool_python.LanguageTool("en-US")
return tool.correct(text)
def predict(model, tokenizer, text):
text = remove_special_characters(text)
bc_token_size = 256
with torch.no_grad():
model.eval()
tokens = tokenizer(
text,
padding="max_length",
truncation=True,
max_length=bc_token_size,
return_tensors="pt",
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
output_norm = {"HUMAN": output_norm[0], "AI": output_norm[1]}
return output_norm
def ai_generated_test(text, model='BC Original'):
return predict(models[model], tokenizers[model], text)
def process_text(text, model='BC Original'):
sentences = nltk.sent_tokenize(text)
num_sentences = len(sentences)
scores = defaultdict(list)
overall_scores = []
for i in range(num_sentences):
chunk = ' '.join(sentences[i:i+3])
if chunk:
result = ai_generated_test(chunk, model)
score = result['AI']
for j in range(i, min(i+3, num_sentences)):
scores[j].append(score)
colored_sentences = []
for i, sentence in enumerate(sentences):
if scores[i]:
avg_score = sum(scores[i]) / len(scores[i])
if avg_score >= 0.65:
colored_sentence = f"<span style='background-color:red;'>{sentence}</span>"
else:
colored_sentence = sentence
colored_sentences.append(colored_sentence)
overall_scores.append(avg_score)
overall_score = sum(overall_scores) / len(overall_scores)
overall_score = {"HUMAN": 1 - overall_score, "AI": overall_score}
return overall_score, " ".join(colored_sentences)
ai_check_options = [
"Polygraf AI Watson (Base Model)",
"Polygraf AI Sherlock (Advanced Model)",
]
def ai_generated_test_sapling(text: str) -> Dict:
response = requests.post(
"https://api.sapling.ai/api/v1/aidetect",
json={"key": "60L9BPSVPIIOEZM0CD1DQWRBPJIUR7SB", "text": f"{text}"}
)
return {"AI": response.json()["score"], "HUMAN": 1 - response.json()["score"]}
class GPT2PPL:
def __init__(self):
self.device = device
self.model = to_device(GPT2LMHeadModel.from_pretrained('gpt2'))
self.tokenizer = GPT2TokenizerFast.from_pretrained('gpt2')
def __call__(self, text):
encodings = self.tokenizer(text, return_tensors='pt')
encodings = {k: v.to(self.device) for k, v in encodings.items()}
max_length = self.model.config.n_positions
stride = 512
seq_len = encodings.input_ids.size(1)
nlls = []
for i in range(0, seq_len, stride):
begin_loc = max(i + stride - max_length, 0)
end_loc = min(i + stride, seq_len)
trg_len = end_loc - i
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(self.device)
target_ids = input_ids.clone()
target_ids[:, :-trg_len] = -100
with torch.no_grad():
outputs = self.model(input_ids, labels=target_ids)
neg_log_likelihood = outputs.loss * trg_len
nlls.append(neg_log_likelihood)
ppl = torch.exp(torch.stack(nlls).sum() / end_loc)
return {"AI": float(ppl), "HUMAN": 1 - float(ppl)}
def ai_generated_test_gptzero(text):
gptzero_model = GPT2PPL()
result = gptzero_model(text)
print(result)
return result, None
def highlighter_polygraf(text, model="Polygraf AI Watson (Base Model)"):
return process_text(text=text, model=model)
def ai_check(text: str, option: str):
if option.startswith("Polygraf AI"):
return highlighter_polygraf(text, option)
elif option == "Sapling AI":
return ai_generated_test_sapling(text)
elif option == "GPTZero":
return ai_generated_test_gptzero(text)
else:
return highlighter_polygraf(text, option)
def generate_prompt(settings: Dict[str, str]) -> str:
prompt = f"""
Write a {settings['article_length']} {settings['format']} on {settings['topic']}.
Style and Tone:
- Writing style: {settings['writing_style']}
- Tone: {settings['tone']}
- Target audience: {settings['user_category']}
Content:
- Depth: {settings['depth_of_content']}
- Structure: {', '.join(settings['structure'])}
Keywords to incorporate:
{', '.join(settings['keywords'])}
Additional requirements:
- Include {settings['num_examples']} relevant examples or case studies
- Incorporate data or statistics from {', '.join(settings['references'])}
- End with a {settings['conclusion_type']} conclusion
- Add a "References" section at the end with at least 3 credible sources, formatted as [1], [2], etc.
- Do not make any headline, title bold.
Ensure proper paragraph breaks for better readability.
Avoid any references to artificial intelligence, language models, or the fact that this is generated by an AI, and do not mention something like here is the article etc.
"""
return prompt
def regenerate_prompt(settings: Dict[str, str]) -> str:
prompt = f"""
"{settings['generated_article']}"
Edit the given text based on user comments.
Comments:
- {settings['user_comments']}
- The original content should not be changed. Make minor modifications based on user comments above.
- Keep the references the same as the given text in the same format.
- Do not make any headline, title bold.
Ensure proper paragraph breaks for better readability.
Avoid any references to artificial intelligence, language models, or the fact that this is generated by an AI, and do not mention something like here is the article etc.
"""
return prompt
def generate_article(
topic: str,
keywords: str,
article_length: str,
format: str,
writing_style: str,
tone: str,
user_category: str,
depth_of_content: str,
structure: str,
references: str,
num_examples: str,
conclusion_type: str,
ai_model: str,
api_key: str = None,
generated_article: str = None,
user_comments: str = None,
) -> str:
settings = {
"topic": topic,
"keywords": [k.strip() for k in keywords.split(",")],
"article_length": article_length,
"format": format,
"writing_style": writing_style,
"tone": tone,
"user_category": user_category,
"depth_of_content": depth_of_content,
"structure": [s.strip() for s in structure.split(",")],
"references": [r.strip() for r in references.split(",")],
"num_examples": num_examples,
"conclusion_type": conclusion_type,
"generated_article": generated_article,
"user_comments": user_comments,
}
if generated_article:
prompt = regenerate_prompt(settings)
else:
prompt = generate_prompt(settings)
print(prompt)
if ai_model in ["OpenAI GPT 3.5", "OpenAI GPT 4"]:
response = openai.ChatCompletion.create(
model="gpt-4" if ai_model == "OpenAI GPT 4" else "gpt-3.5-turbo",
messages=[
{
"role": "system",
"content": "You are a professional content writer with expertise in various fields.",
},
{"role": "user", "content": prompt},
],
max_tokens=3000,
n=1,
stop=None,
temperature=0.7,
)
article = response.choices[0].message.content.strip()
else:
article = generate(prompt, ai_model, api_key)
return clean_text(article)
def humanize(
text: str,
model: str,
temperature: float = 1.2,
repetition_penalty: float = 1,
top_k: int = 50,
length_penalty: float = 1,
) -> str:
result = paraphrase_text(
text=text,
model_name=model,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_k=top_k,
length_penalty=length_penalty,
)
return format_and_correct_language_check(result)
def update_visibility_api(model: str):
if model in ["OpenAI GPT 3.5", "OpenAI GPT 4"]:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def format_references(text: str) -> str:
lines = text.split("\n")
references = []
article_text = []
in_references = False
for line in lines:
if line.strip().lower() == "references" or line.strip().lower() == "references:":
in_references = True
continue
if in_references:
references.append(line.strip())
else:
article_text.append(line)
formatted_refs = []
for i, ref in enumerate(references, 1):
ref = remove_bracketed_numbers(ref)
formatted_refs.append(f"[{i}] {ref}\n")
return "\n\n".join(article_text) + "\n\nReferences:\n" + "\n".join(formatted_refs)
def generate_and_format(
topic,
keywords,
article_length,
format,
writing_style,
tone,
user_category,
depth_of_content,
structure,
references,
num_examples,
conclusion_type,
ai_model,
api_key,
generated_article: str = None,
user_comments: str = None,
):
article = generate_article(
topic,
keywords,
article_length,
format,
writing_style,
tone,
user_category,
depth_of_content,
structure,
references,
num_examples,
conclusion_type,
ai_model,
api_key,
generated_article,
user_comments,
)
return format_references(article)
def create_interface():
with gr.Blocks(
theme=gr.themes.Default(
primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.yellow, neutral_hue=gr.themes.colors.gray
),
css="""
.input-highlight-pink block_label {background-color: #008080}
""",
) as demo:
gr.Markdown("# Polygraf AI Content Writer", elem_classes="text-center text-3xl mb-6")
with gr.Row():
with gr.Column(scale=2):
with gr.Group():
gr.Markdown("## Article Configuration", elem_classes="text-xl mb-4")
input_topic = gr.Textbox(
label="Topic",
placeholder="Enter the main topic of your article",
elem_classes="input-highlight-pink",
)
input_keywords = gr.Textbox(
label="Keywords",
placeholder="Enter comma-separated keywords",
elem_classes="input-highlight-yellow",
)
with gr.Row():
input_format = gr.Dropdown(
choices=[
"Article",
"Essay",
"Blog post",
"Report",
"Research paper",
"News article",
"White paper",
],
value="Article",
label="Format",
elem_classes="input-highlight-turquoise",
)
input_length = gr.Dropdown(
choices=[
"Short (500 words)",
"Medium (1000 words)",
"Long (2000+ words)",
"Very Long (3000+ words)",
],
value="Medium (1000 words)",
label="Article Length",
elem_classes="input-highlight-pink",
)
with gr.Row():
input_writing_style = gr.Dropdown(
choices=[
"Formal",
"Informal",
"Technical",
"Conversational",
"Journalistic",
"Academic",
"Creative",
],
value="Formal",
label="Writing Style",
elem_classes="input-highlight-yellow",
)
input_tone = gr.Dropdown(
choices=["Friendly", "Professional", "Neutral", "Enthusiastic", "Skeptical", "Humorous"],
value="Professional",
label="Tone",
elem_classes="input-highlight-turquoise",
)
input_user_category = gr.Dropdown(
choices=[
"Students",
"Professionals",
"Researchers",
"General Public",
"Policymakers",
"Entrepreneurs",
],
value="General Public",
label="Target Audience",
elem_classes="input-highlight-pink",
)
input_depth = gr.Dropdown(
choices=[
"Surface-level overview",
"Moderate analysis",
"In-depth research",
"Comprehensive study",
],
value="Moderate analysis",
label="Depth of Content",
elem_classes="input-highlight-yellow",
)
input_structure = gr.Dropdown(
choices=[
"Introduction, Body, Conclusion",
"Abstract, Introduction, Methods, Results, Discussion, Conclusion",
"Executive Summary, Problem Statement, Analysis, Recommendations, Conclusion",
"Introduction, Literature Review, Methodology, Findings, Analysis, Conclusion",
],
value="Introduction, Body, Conclusion",
label="Structure",
elem_classes="input-highlight-turquoise",
)
input_references = gr.Dropdown(
choices=[
"Academic journals",
"Industry reports",
"Government publications",
"News outlets",
"Expert interviews",
"Case studies",
],
value="News outlets",
label="References",
elem_classes="input-highlight-pink",
)
input_num_examples = gr.Dropdown(
choices=["1-2", "3-4", "5+"],
value="1-2",
label="Number of Examples/Case Studies",
elem_classes="input-highlight-yellow",
)
input_conclusion = gr.Dropdown(
choices=["Summary", "Call to Action", "Future Outlook", "Thought-provoking Question"],
value="Summary",
label="Conclusion Type",
elem_classes="input-highlight-turquoise",
)
with gr.Group():
gr.Markdown("## AI Model Configuration", elem_classes="text-xl mb-4")
ai_generator = gr.Dropdown(
choices=["Llama 3", "Groq", "Mistral", "Gemma", "OpenAI GPT 3.5", "OpenAI GPT 4"],
value="Llama 3",
label="AI Model",
elem_classes="input-highlight-pink",
)
input_api = gr.Textbox(label="API Key", visible=False)
ai_generator.change(update_visibility_api, ai_generator, input_api)
generate_btn = gr.Button("Generate Article", variant="primary")
with gr.Accordion("Advanced Humanizer Settings", open=True):
with gr.Row():
model_dropdown = gr.Radio(
choices=[
"Base Model",
"Large Model",
"XL Model",
# "XL Law Model",
# "XL Marketing Model",
# "XL Child Style Model",
],
value="Large Model",
label="Humanizer Model Version",
)
with gr.Row():
temperature_slider = gr.Slider(
minimum=0.5, maximum=2.0, step=0.1, value=1.2, label="Temperature"
)
top_k_slider = gr.Slider(minimum=0, maximum=300, step=25, value=50, label="Top k")
with gr.Row():
repetition_penalty_slider = gr.Slider(
minimum=1.0, maximum=2.0, step=0.1, value=1, label="Repetition Penalty"
)
length_penalty_slider = gr.Slider(
minimum=0.0, maximum=2.0, step=0.1, value=1.0, label="Length Penalty"
)
with gr.Column(scale=3):
output_article = gr.Textbox(label="Generated Article", lines=20)
ai_comments = gr.Textbox(
label="Add comments to help edit generated text", interactive=True, visible=False
)
regenerate_btn = gr.Button("Regenerate Article", variant="primary", visible=False)
with gr.Row():
with gr.Column():
ai_detector_dropdown = gr.Radio(
choices=ai_check_options, label="Select AI Detector", value="Polygraf AI Watson (Base Model)"
)
ai_check_btn = gr.Button("AI Check")
ai_check_result = gr.Label(label="AI Check Result")
highlighted_text = gr.HTML(label="Sentence Breakdown", visible=False)
humanize_btn = gr.Button("Humanize")
# humanized_output = gr.Textbox(label="Humanized Article", lines=20, elem_classes=["custom-textbox"])
humanized_output = gr.Markdown(label="Humanized Article", value="\n\n\n\n", render=True)
copy_to_input_btn = gr.Button("Copy to Input for AI Check")
def become_visible(text):
if text:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def highlight_visible(text):
if text.startswith("Polygraf"):
return gr.update(visible=True)
else:
return gr.update(visible=False)
ai_detector_dropdown.change(highlight_visible, inputs=ai_detector_dropdown, outputs=highlighted_text)
output_article.change(become_visible, inputs=output_article, outputs=ai_comments)
ai_comments.change(become_visible, inputs=output_article, outputs=regenerate_btn)
generate_btn.click(
fn=generate_and_format,
inputs=[
input_topic,
input_keywords,
input_length,
input_format,
input_writing_style,
input_tone,
input_user_category,
input_depth,
input_structure,
input_references,
input_num_examples,
input_conclusion,
ai_generator,
input_api,
],
outputs=[output_article],
)
regenerate_btn.click(
fn=generate_and_format,
inputs=[
input_topic,
input_keywords,
input_length,
input_format,
input_writing_style,
input_tone,
input_user_category,
input_depth,
input_structure,
input_references,
input_num_examples,
input_conclusion,
ai_generator,
input_api,
output_article,
ai_comments,
],
outputs=[output_article],
)
ai_check_btn.click(
fn=ai_check,
inputs=[output_article, ai_detector_dropdown],
outputs=[ai_check_result, highlighted_text],
)
humanize_btn.click(
fn=humanize,
inputs=[
output_article,
model_dropdown,
temperature_slider,
repetition_penalty_slider,
top_k_slider,
length_penalty_slider,
],
outputs=[humanized_output],
)
copy_to_input_btn.click(
fn=copy_to_input,
inputs=[humanized_output],
outputs=[output_article],
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(server_name="0.0.0.0", share=True, server_port=7890) |