article_writer / ai_generate.py
minko186's picture
Update ai_generate.py
5f853f6 verified
raw
history blame
2.48 kB
import torch
from openai import OpenAI
import os
from transformers import pipeline
from groq import Groq
groq_client = Groq(
api_key=os.environ.get("groq_key"),
)
def generate_groq(text, model):
completion = client.chat.completions.create(
model = model,
messages=[
{
"role": "user",
"content": text
},
{
"role": "assistant",
"content": "Please follow the instruction and write about the given topic in approximately the given number of words"
}
],
temperature=1,
max_tokens=1024,
top_p=1,
stream=True,
stop=None,
)
response = ""
for i, chunk in enumerate(completion):
if i != 0:
response += chunk.choices[0].delta.content or ""
return response
def generate(text, model, api):
if model == "Llama 3":
return generate_groq(text, "llama3-70b-8192")
elif model == "Groq":
return generate_groq(text, "llama3-groq-70b-8192-tool-use-preview")
elif model == "Mistral":
return generate_groq(text, "mixtral-8x7b-32768")
elif model == "Gemma":
return generate_groq(text, "gemma2-9b-it")
elif model == "OpenAI GPT 3.5":
client = OpenAI(
api_key=api,
)
message=[{"role": "user", "content": text}]
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = message,
temperature=0.2,
max_tokens=800,
frequency_penalty=0.0
)
return response[0].message.content
elif model == "OpenAI GPT 4":
client = OpenAI(
api_key=api,
)
message=[{"role": "user", "content": text}]
response = client.chat.completions.create(
model="gpt-4-turbo",
messages = message,
temperature=0.2,
max_tokens=800,
frequency_penalty=0.0
)
return response[0].message.content
elif model == "OpenAI GPT 4o":
client = OpenAI(
api_key=api,
)
message=[{"role": "user", "content": text}]
response = client.chat.completions.create(
model="gpt-4o",
messages = message,
temperature=0.2,
max_tokens=800,
frequency_penalty=0.0
)
return response[0].message.content