article_writer / ai_generate.py
eljanmahammadli's picture
#feat: added YouTube as RAG input; removed standard humanizer
744d9e3
import gc
import os
import time
import re
import numpy as np
import torch
import bm25s
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_core.documents import Document
from langchain_community.embeddings.sentence_transformer import (
SentenceTransformerEmbeddings,
)
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.runnables import RunnablePassthrough
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_anthropic import ChatAnthropic
from dotenv import load_dotenv
from langchain_core.output_parsers import XMLOutputParser
from langchain.prompts import ChatPromptTemplate
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain_core.messages import HumanMessage
from langchain.retrievers import EnsembleRetriever
from langchain_community.retrievers import BM25Retriever
load_dotenv()
# suppress grpc and glog logs for gemini
os.environ["GRPC_VERBOSITY"] = "ERROR"
os.environ["GLOG_minloglevel"] = "2"
# RAG parameters
CHUNK_SIZE = 1024
CHUNK_OVERLAP = CHUNK_SIZE // 8
K = 20 # number of chunks to retrieve from semantic search
FETCH_K = 50
N_BM25 = 20 # number of chunks to retrieve from keyword search
TOP_N = 10 # final number of chunks to keep
model_kwargs = {"device": "cuda:1"}
print("Loading embedding and reranker models...")
embedding_function = SentenceTransformerEmbeddings(
model_name="mixedbread-ai/mxbai-embed-large-v1", model_kwargs=model_kwargs
)
# "sentence-transformers/all-MiniLM-L6-v2"
# "mixedbread-ai/mxbai-embed-large-v1"
reranker = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base", model_kwargs=model_kwargs)
compressor = CrossEncoderReranker(model=reranker, top_n=TOP_N)
llm_model_translation = {
"LLaMA 3": "llama3-70b-8192",
"OpenAI GPT 4o Mini": "gpt-4o-mini",
"OpenAI GPT 4o": "gpt-4o",
"OpenAI GPT 4": "gpt-4-turbo",
"Gemini 1.5 Pro": "gemini-1.5-pro",
"Claude Sonnet 3.5": "claude-3-5-sonnet-20240620",
}
llm_classes = {
"llama3-70b-8192": ChatGroq,
"gpt-4o-mini": ChatOpenAI,
"gpt-4o": ChatOpenAI,
"gpt-4-turbo": ChatOpenAI,
"gemini-1.5-pro": ChatGoogleGenerativeAI,
"claude-3-5-sonnet-20240620": ChatAnthropic,
}
xml_system = """You're a helpful AI assistant. Given a user prompt and some related sources, fulfill all the requirements \
of the prompt and provide citations. If a chunk of the generated text does not use any of the sources (for example, \
introductions or general text), don't put a citation for that chunk and just leave "citations" section empty. Otherwise, \
list all sources used for that chunk of the text. Remember, don't add inline citations in the text itself in any circumstant.
Add all citations to the separate citations section. Use explicit new lines in the text to show paragraph splits. For each chunk use this example format:
<chunk>
<text>This is a sample text chunk....</text>
<citations>
<citation>1</citation>
<citation>3</citation>
...
</citations>
</chunk>
If the prompt asks for a reference section, add it in a chunk without any citations
Return a citation for every quote across all articles that justify the text. Remember use the following format for your final output:
<cited_text>
<chunk>
<text></text>
<citations>
<citation><source_id></source_id></citation>
...
</citations>
</chunk>
<chunk>
<text></text>
<citations>
<citation><source_id></source_id></citation>
...
</citations>
</chunk>
...
</cited_text>
The entire text should be wrapped in one cited_text. For References section (if asked by prompt), don't add citations.
For source id, give a valid integer alone without a key.
Here are the sources:{context}"""
xml_prompt = ChatPromptTemplate.from_messages([("system", xml_system), ("human", "{input}")])
def format_docs_xml(docs: list[Document]) -> str:
formatted = []
for i, doc in enumerate(docs):
doc_str = f"""\
<source id=\"{i}\">
<path>{doc.metadata['source']}</path>
<article_snippet>{doc.page_content}</article_snippet>
</source>"""
formatted.append(doc_str)
return "\n\n<sources>" + "\n".join(formatted) + "</sources>"
def get_doc_content(docs, id):
return docs[id].page_content
def remove_citations(text):
text = re.sub(r"<\d+>", "", text)
return text
def display_cited_text(data):
combined_text = ""
citations = {}
# Iterate through the cited_text list
if "cited_text" in data:
for item in data["cited_text"]:
if "chunk" in item and len(item["chunk"]) > 0:
chunk_text = item["chunk"][0].get("text")
combined_text += chunk_text
citation_ids = []
# Process the citations for the chunk
if len(item["chunk"]) > 1 and item["chunk"][1]["citations"]:
for c in item["chunk"][1]["citations"]:
if c and "citation" in c:
citation = c["citation"]
if isinstance(citation, dict) and "source_id" in citation:
citation = citation["source_id"]
if isinstance(citation, str):
try:
citation_ids.append(int(citation))
except ValueError:
pass # Handle cases where the string is not a valid integer
if citation_ids:
citation_texts = [f"<{cid}>" for cid in citation_ids]
combined_text += " " + "".join(citation_texts)
combined_text += "\n\n"
return combined_text
def get_citations(data, docs):
# Initialize variables for the combined text and a dictionary for citations
citations = {}
# Iterate through the cited_text list
if data.get("cited_text"):
for item in data["cited_text"]:
citation_ids = []
if "chunk" in item and len(item["chunk"]) > 1 and item["chunk"][1].get("citations"):
for c in item["chunk"][1]["citations"]:
if c and "citation" in c:
citation = c["citation"]
if isinstance(citation, dict) and "source_id" in citation:
citation = citation["source_id"]
if isinstance(citation, str):
try:
citation_ids.append(int(citation))
except ValueError:
pass # Handle cases where the string is not a valid integer
# Store unique citations in a dictionary
for citation_id in citation_ids:
if citation_id not in citations:
citations[citation_id] = {
"source": docs[citation_id].metadata["source"],
"content": docs[citation_id].page_content,
}
return citations
def citations_to_html(citations):
if citations:
# Generate the HTML for the unique citations
html_content = ""
for citation_id, citation_info in citations.items():
html_content += (
f"<li><strong>Source ID:</strong> {citation_id}<br>"
f"<strong>Path:</strong> {citation_info['source']}<br>"
f"<strong>Page Content:</strong> {citation_info['content']}</li>"
)
html_content += "</ul></body></html>"
return html_content
return ""
def load_llm(model: str, api_key: str, temperature: float = 1.0, max_length: int = 2048):
model_name = llm_model_translation.get(model)
llm_class = llm_classes.get(model_name)
if not llm_class:
raise ValueError(f"Model {model} not supported.")
try:
llm = llm_class(model_name=model_name, temperature=temperature, max_tokens=max_length)
except Exception as e:
print(f"An error occurred: {e}")
llm = None
return llm
def create_db_with_langchain(path: list[str], url_content: dict, yt_content: dict, query: str):
all_docs = []
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CHUNK_SIZE,
chunk_overlap=CHUNK_OVERLAP,
separators=[
"\n\n",
"\n",
".",
"\uff0e", # Fullwidth full stop
"\u3002", # Ideographic full stop
"?",
"!",
",",
"\uff0c", # Fullwidth comma
"\u3001", # Ideographic comma
" ",
"\u200B", # Zero-width space
"",
],
keep_separator=True,
is_separator_regex=False,
length_function=len,
add_start_index=False,
)
# PDF
if path:
for file in path:
loader = PyMuPDFLoader(file)
data = loader.load()
# split it into chunks
docs = text_splitter.split_documents(data)
all_docs.extend(docs)
# Internet Search
if url_content:
for url, content in url_content.items():
doc = Document(page_content=content, metadata={"source": url})
# split it into chunks
docs = text_splitter.split_documents([doc])
all_docs.extend(docs)
# YouTube Transcriptions
if yt_content:
for yt_url, content in yt_content.items():
doc = Document(page_content=content, metadata={"source": yt_url})
# split it into chunks
docs = text_splitter.split_documents([doc])
all_docs.extend(docs)
print(f"### Total number of documents before bm25s: {len(all_docs)}")
# if the number of docs is too high, we need to reduce it
num_max_docs = 300
if len(all_docs) > num_max_docs:
docs_raw = [doc.page_content for doc in all_docs]
retriever = bm25s.BM25(corpus=docs_raw)
retriever.index(bm25s.tokenize(docs_raw))
results, scores = retriever.retrieve(bm25s.tokenize(query), k=len(docs_raw), sorted=False)
top_indices = np.argpartition(scores[0], -num_max_docs)[-num_max_docs:]
all_docs = [all_docs[i] for i in top_indices]
# print docs
for idx, doc in enumerate(all_docs):
print(f"Doc: {idx} | Length = {len(doc.page_content)}")
bm25_retriever = BM25Retriever.from_documents(all_docs)
bm25_retriever.k = N_BM25
assert len(all_docs) > 0, "No PDFs or scrapped data provided"
db = Chroma.from_documents(all_docs, embedding_function)
torch.cuda.empty_cache()
gc.collect()
return db, bm25_retriever
def pretty_print_docs(docs):
print(f"\n{'-' * 100}\n".join([f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)]))
def generate_rag(
prompt: str,
input_role: str,
topic: str,
context: str,
model: str,
url_content: dict,
path: list[str],
temperature: float = 1.0,
max_length: int = 2048,
api_key: str = "",
sys_message="",
yt_content=None,
):
llm = load_llm(model, api_key, temperature, max_length)
if llm is None:
print("Failed to load LLM. Aborting operation.")
return None
query = llm_wrapper(input_role, topic, context, model="OpenAI GPT 4o", task_type="rag", temperature=0.7)
print("### Query: ", query)
db, bm25_retriever = create_db_with_langchain(path, url_content, yt_content, query)
retriever = db.as_retriever(search_type="mmr", search_kwargs={"k": K, "fetch_k": FETCH_K, "lambda_mult": 0.75})
t0 = time.time()
ensemble_retriever = EnsembleRetriever(retrievers=[bm25_retriever, retriever], weights=[0.4, 0.6])
compression_retriever = ContextualCompressionRetriever(base_compressor=compressor, base_retriever=ensemble_retriever)
docs = compression_retriever.invoke(query)
t1 = time.time()
print(f"Time for retrieval : {t1 - t0:.2f}s")
print(pretty_print_docs(docs))
formatted_docs = format_docs_xml(docs)
rag_chain = RunnablePassthrough.assign(context=lambda _: formatted_docs) | xml_prompt | llm | XMLOutputParser()
result = rag_chain.invoke({"input": prompt})
citations = get_citations(result, docs)
db.delete_collection() # important, othwerwise it will keep the documents in memory
torch.cuda.empty_cache()
gc.collect()
return result, citations
def generate_base(
prompt: str, topic: str, model: str, temperature: float, max_length: int, api_key: str, sys_message=""
):
llm = load_llm(model, api_key, temperature, max_length)
if llm is None:
print("Failed to load LLM. Aborting operation.")
return None, None
try:
output = llm.invoke(prompt).content
output_dict = {"cited_text": [{"chunk": [{"text": output}, {"citations": None}]}]}
return output_dict, None
except Exception as e:
print(f"An error occurred while running the model: {e}")
return None, None
def generate(
prompt: str,
input_role: str,
topic: str,
context: str,
model: str,
url_content: dict,
path: list[str],
temperature: float = 1.0,
max_length: int = 2048,
api_key: str = "",
sys_message="",
yt_content=None,
):
if path or url_content or yt_content:
return generate_rag(
prompt, input_role, topic, context, model, url_content, path, temperature, max_length, api_key, sys_message, yt_content
)
else:
return generate_base(prompt, topic, model, temperature, max_length, api_key, sys_message)
def llm_wrapper(
iam=None,
topic=None,
context=None,
temperature=1.0,
max_length=512,
api_key="",
model="OpenAI GPT 4o Mini",
task_type="internet",
):
llm = load_llm(model, api_key, temperature, max_length)
if task_type == "rag":
system_message_content = """You are an AI assistant tasked with reformulating user inputs to improve retrieval query in a RAG system.
- Given the original user inputs, construct query to be more specific, detailed, and likely to retrieve relevant information.
- Generate the query as a complete sentence or question, not just as keywords, to ensure the retrieval process can find detailed and contextually relevant information.
- You may enhance the query by adding related and relevant terms, but do not introduce new facts, such as dates, numbers, or assumed information, that were not provided in the input.
**Inputs:**
- **User Role**: {iam}
- **Topic**: {topic}
- **Context**: {context}
**Only return the search query**."""
elif task_type == "internet":
system_message_content = """You are an AI assistant tasked with generating an optimized Google search query to help retrieve relevant websites, news, articles, and other sources of information.
- You may enhance the query by adding related and relevant terms, but do not introduce new facts, such as dates, numbers, or assumed information, that were not provided in the input.
- The query should be **concise** and include important **keywords** while incorporating **short phrases** or context where it improves the search.
- Avoid the use of "site:" operators or narrowing search by specific websites.
**Inputs:**
- **User Role**: {iam}
- **Topic**: {topic}
- **Context**: {context}
**Only return the search query**.
"""
else:
raise ValueError("Task type not recognized. Please specify 'rag' or 'internet'.")
human_message = HumanMessage(content=system_message_content.format(iam=iam, topic=topic, context=context))
response = llm.invoke([human_message])
return response.content.strip('"').strip("'")