Spaces:
Runtime error
Runtime error
Update humanize.py
Browse files- humanize.py +86 -86
humanize.py
CHANGED
@@ -1,93 +1,93 @@
|
|
1 |
-
import torch
|
2 |
-
from nltk import sent_tokenize
|
3 |
-
import nltk
|
4 |
-
from tqdm import tqdm
|
5 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
6 |
|
7 |
-
nltk.download("punkt")
|
8 |
-
# autodetect the available device
|
9 |
-
GPU_IDX = 1 # which GPU to use
|
10 |
-
if torch.cuda.is_available():
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
else:
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
# Configuration for models and their adapters
|
21 |
-
model_config = {
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
}
|
34 |
|
35 |
-
# cache the base models, tokenizers, and adapters
|
36 |
-
models, tokenizers = {}, {}
|
37 |
-
for name, config in model_config.items():
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
|
49 |
|
50 |
-
def paraphrase_text(
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
):
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
-
|
93 |
-
|
|
|
1 |
+
# import torch
|
2 |
+
# from nltk import sent_tokenize
|
3 |
+
# import nltk
|
4 |
+
# from tqdm import tqdm
|
5 |
+
# from transformers import T5ForConditionalGeneration, T5Tokenizer
|
6 |
|
7 |
+
# nltk.download("punkt")
|
8 |
+
# # autodetect the available device
|
9 |
+
# GPU_IDX = 1 # which GPU to use
|
10 |
+
# if torch.cuda.is_available():
|
11 |
+
# num_gpus = torch.cuda.device_count()
|
12 |
+
# print(f"Number of available GPUs: {num_gpus}")
|
13 |
+
# assert GPU_IDX < num_gpus, f"GPU index {GPU_IDX} not available."
|
14 |
+
# device = torch.device(f"cuda:{GPU_IDX}")
|
15 |
+
# print(f"Using GPU: {GPU_IDX}")
|
16 |
+
# else:
|
17 |
+
# print("CUDA is not available. Using CPU instead.")
|
18 |
+
# device = torch.device("cpu")
|
19 |
|
20 |
+
# # Configuration for models and their adapters
|
21 |
+
# model_config = {
|
22 |
+
# "Base Model": "polygraf-ai/poly-humanizer-base",
|
23 |
+
# "Large Model": "polygraf-ai/poly-humanizer-large",
|
24 |
+
# # "XL Model": {
|
25 |
+
# # "path": "google/flan-t5-xl",
|
26 |
+
# # "adapters": {
|
27 |
+
# # "XL Model Adapter": "polygraf-ai/poly-humanizer-XL-adapter",
|
28 |
+
# # "XL Law Model Adapter": "polygraf-ai/poly-humanizer-XL-law-adapter",
|
29 |
+
# # "XL Marketing Model Adapter": "polygraf-ai/marketing-cleaned-13K-grad-acum-4-full",
|
30 |
+
# # "XL Child Style Model Adapter": "polygraf-ai/poly-humanizer-XL-children-adapter-checkpoint-4000",
|
31 |
+
# # },
|
32 |
+
# # },
|
33 |
+
# }
|
34 |
|
35 |
+
# # cache the base models, tokenizers, and adapters
|
36 |
+
# models, tokenizers = {}, {}
|
37 |
+
# for name, config in model_config.items():
|
38 |
+
# path = config if isinstance(config, str) else config["path"]
|
39 |
+
# # initialize model and tokenizer
|
40 |
+
# model = T5ForConditionalGeneration.from_pretrained(path, torch_dtype=torch.bfloat16).to(device)
|
41 |
+
# models[name] = model
|
42 |
+
# tokenizers[name] = T5Tokenizer.from_pretrained(path)
|
43 |
+
# # load all avalable adapters, each being additional roughly 150M parameters
|
44 |
+
# if isinstance(config, dict) and "adapters" in config:
|
45 |
+
# for adapter_name, adapter_path in config["adapters"].items():
|
46 |
+
# model.load_adapter(adapter_path, adapter_name=adapter_name)
|
47 |
+
# print(f"Loaded adapter: {adapter_name}, Num. params: {model.num_parameters()}")
|
48 |
|
49 |
|
50 |
+
# def paraphrase_text(
|
51 |
+
# text,
|
52 |
+
# model_name="Base Model",
|
53 |
+
# temperature=1.2,
|
54 |
+
# repetition_penalty=1.0,
|
55 |
+
# top_k=50,
|
56 |
+
# length_penalty=1.0,
|
57 |
+
# ):
|
58 |
+
# # select the model, tokenizer and adapter
|
59 |
+
# if "XL" in model_name: # dynamic adapter load/unload for XL models
|
60 |
+
# # all adapter models use the XL model as the base
|
61 |
+
# tokenizer, model = tokenizers["XL Model"], models["XL Model"]
|
62 |
+
# # set the adapter if it's not already set
|
63 |
+
# if model.active_adapters() != [f"{model_name} Adapter"]:
|
64 |
+
# model.set_adapter(f"{model_name} Adapter")
|
65 |
+
# print(f"Using adapter: {model_name} Adapter")
|
66 |
+
# else:
|
67 |
+
# tokenizer = tokenizers[model_name]
|
68 |
+
# model = models[model_name]
|
69 |
|
70 |
+
# # paraphrase each chunk of text
|
71 |
+
# sentences = sent_tokenize(text) # sentence boundary detection
|
72 |
+
# paraphrases = []
|
73 |
+
# for sentence in tqdm(sentences):
|
74 |
+
# sentence = sentence.strip()
|
75 |
+
# if len(sentence) == 0:
|
76 |
+
# continue
|
77 |
+
# inputs = tokenizer("Please paraphrase this sentence: " + sentence, return_tensors="pt").to(device)
|
78 |
+
# outputs = model.generate(
|
79 |
+
# **inputs,
|
80 |
+
# do_sample=True,
|
81 |
+
# temperature=temperature,
|
82 |
+
# repetition_penalty=repetition_penalty,
|
83 |
+
# max_length=128,
|
84 |
+
# top_k=top_k,
|
85 |
+
# length_penalty=length_penalty,
|
86 |
+
# )
|
87 |
+
# paraphrased_sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
88 |
+
# paraphrases.append(paraphrased_sentence)
|
89 |
+
# print(f"\nOriginal: {sentence}")
|
90 |
+
# print(f"Paraphrased: {paraphrased_sentence}")
|
91 |
|
92 |
+
# combined_paraphrase = " ".join(paraphrases)
|
93 |
+
# return combined_paraphrase
|