Spaces:
Runtime error
Runtime error
Create humanize.py
Browse files- humanize.py +93 -0
humanize.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from nltk import sent_tokenize
|
3 |
+
import nltk
|
4 |
+
from tqdm import tqdm
|
5 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
6 |
+
|
7 |
+
nltk.download("punkt")
|
8 |
+
# autodetect the available device
|
9 |
+
GPU_IDX = 1 # which GPU to use
|
10 |
+
if torch.cuda.is_available():
|
11 |
+
num_gpus = torch.cuda.device_count()
|
12 |
+
print(f"Number of available GPUs: {num_gpus}")
|
13 |
+
assert GPU_IDX < num_gpus, f"GPU index {GPU_IDX} not available."
|
14 |
+
device = torch.device(f"cuda:{GPU_IDX}")
|
15 |
+
print(f"Using GPU: {GPU_IDX}")
|
16 |
+
else:
|
17 |
+
print("CUDA is not available. Using CPU instead.")
|
18 |
+
device = torch.device("cpu")
|
19 |
+
|
20 |
+
# Configuration for models and their adapters
|
21 |
+
model_config = {
|
22 |
+
"Base Model": "polygraf-ai/poly-humanizer-base",
|
23 |
+
"Large Model": "polygraf-ai/poly-humanizer-large",
|
24 |
+
"XL Model": {
|
25 |
+
"path": "google/flan-t5-xl",
|
26 |
+
"adapters": {
|
27 |
+
"XL Model Adapter": "polygraf-ai/poly-humanizer-XL-adapter",
|
28 |
+
"XL Law Model Adapter": "polygraf-ai/poly-humanizer-XL-law-adapter",
|
29 |
+
"XL Marketing Model Adapter": "polygraf-ai/marketing-cleaned-13K-grad-acum-4-full",
|
30 |
+
"XL Child Style Model Adapter": "polygraf-ai/poly-humanizer-XL-children-adapter-checkpoint-4000",
|
31 |
+
},
|
32 |
+
},
|
33 |
+
}
|
34 |
+
|
35 |
+
# cache the base models, tokenizers, and adapters
|
36 |
+
models, tokenizers = {}, {}
|
37 |
+
for name, config in model_config.items():
|
38 |
+
path = config if isinstance(config, str) else config["path"]
|
39 |
+
# initialize model and tokenizer
|
40 |
+
model = T5ForConditionalGeneration.from_pretrained(path, torch_dtype=torch.bfloat16).to(device)
|
41 |
+
models[name] = model
|
42 |
+
tokenizers[name] = T5Tokenizer.from_pretrained(path)
|
43 |
+
# load all avalable adapters, each being additional roughly 150M parameters
|
44 |
+
if isinstance(config, dict) and "adapters" in config:
|
45 |
+
for adapter_name, adapter_path in config["adapters"].items():
|
46 |
+
model.load_adapter(adapter_path, adapter_name=adapter_name)
|
47 |
+
print(f"Loaded adapter: {adapter_name}, Num. params: {model.num_parameters()}")
|
48 |
+
|
49 |
+
|
50 |
+
def paraphrase_text(
|
51 |
+
text,
|
52 |
+
model_name="Base Model",
|
53 |
+
temperature=1.2,
|
54 |
+
repetition_penalty=1.0,
|
55 |
+
top_k=50,
|
56 |
+
length_penalty=1.0,
|
57 |
+
):
|
58 |
+
# select the model, tokenizer and adapter
|
59 |
+
if "XL" in model_name: # dynamic adapter load/unload for XL models
|
60 |
+
# all adapter models use the XL model as the base
|
61 |
+
tokenizer, model = tokenizers["XL Model"], models["XL Model"]
|
62 |
+
# set the adapter if it's not already set
|
63 |
+
if model.active_adapters() != [f"{model_name} Adapter"]:
|
64 |
+
model.set_adapter(f"{model_name} Adapter")
|
65 |
+
print(f"Using adapter: {model_name} Adapter")
|
66 |
+
else:
|
67 |
+
tokenizer = tokenizers[model_name]
|
68 |
+
model = models[model_name]
|
69 |
+
|
70 |
+
# paraphrase each chunk of text
|
71 |
+
sentences = sent_tokenize(text) # sentence boundary detection
|
72 |
+
paraphrases = []
|
73 |
+
for sentence in tqdm(sentences):
|
74 |
+
sentence = sentence.strip()
|
75 |
+
if len(sentence) == 0:
|
76 |
+
continue
|
77 |
+
inputs = tokenizer("Please paraphrase this sentence: " + sentence, return_tensors="pt").to(device)
|
78 |
+
outputs = model.generate(
|
79 |
+
**inputs,
|
80 |
+
do_sample=True,
|
81 |
+
temperature=temperature,
|
82 |
+
repetition_penalty=repetition_penalty,
|
83 |
+
max_length=128,
|
84 |
+
top_k=top_k,
|
85 |
+
length_penalty=length_penalty,
|
86 |
+
)
|
87 |
+
paraphrased_sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
88 |
+
paraphrases.append(paraphrased_sentence)
|
89 |
+
print(f"\nOriginal: {sentence}")
|
90 |
+
print(f"Paraphrased: {paraphrased_sentence}")
|
91 |
+
|
92 |
+
combined_paraphrase = " ".join(paraphrases)
|
93 |
+
return combined_paraphrase
|