Peter
improve UI layout
0e1ad86
raw
history blame
7.16 kB
import argparse
import logging
import time
import gradio as gr
import torch
from transformers import pipeline
from utils import postprocess, clear, make_email_link
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
use_gpu = torch.cuda.is_available()
def generate_text(
prompt: str,
gen_length=64,
num_beams=4,
no_repeat_ngram_size=2,
length_penalty=1.0,
# perma params (not set by user)
repetition_penalty=3.5,
abs_max_length=512,
verbose=False,
):
"""
generate_text - generate text from a prompt using a text generation pipeline
Args:
prompt (str): the prompt to generate text from
model_input (_type_): the text generation pipeline
max_length (int, optional): the maximum length of the generated text. Defaults to 128.
method (str, optional): the generation method. Defaults to "Sampling".
verbose (bool, optional): the verbosity of the output. Defaults to False.
Returns:
str: the generated text
"""
global generator
if verbose:
logging.info(f"Generating text from prompt:\n\n{prompt}")
logging.info(
f"params:\tmax_length={gen_length}, num_beams={num_beams}, no_repeat_ngram_size={no_repeat_ngram_size}, length_penalty={length_penalty}, repetition_penalty={repetition_penalty}, abs_max_length={abs_max_length}"
)
st = time.perf_counter()
input_tokens = generator.tokenizer(prompt)
input_len = len(input_tokens["input_ids"])
if input_len > abs_max_length:
logging.info(f"Input too long {input_len} > {abs_max_length}, may cause errors")
result = generator(
prompt,
max_length=gen_length + input_len,
min_length=input_len + 4,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
length_penalty=length_penalty,
do_sample=False,
early_stopping=True,
# tokenizer
truncation=True,
) # generate
response = result[0]["generated_text"]
rt = time.perf_counter() - st
if verbose:
logging.info(f"Generated text: {response}")
logging.info(f"Generation time: {rt:.2f}s")
formatted_email = postprocess(response)
return formatted_email, make_email_link(body=formatted_email)
def get_parser():
"""
get_parser - a helper function for the argparse module
"""
parser = argparse.ArgumentParser(
description="Text Generation demo for postbot",
)
parser.add_argument(
"-m",
"--model",
required=False,
type=str,
default="postbot/distilgpt2-emailgen",
help="Pass an different huggingface model tag to use a custom model",
)
parser.add_argument(
"-v",
"--verbose",
required=False,
action="store_true",
help="Verbose output",
)
return parser
default_prompt = """
Hello,
Following up on last week's bubblegum shipment, I"""
if __name__ == "__main__":
logging.info("\n\n\nStarting new instance of app.py")
args = get_parser().parse_args()
logging.info(f"received args:\t{args}")
model_tag = args.model
verbose = args.verbose
logging.info(f"Loading model: {model_tag}, use GPU = {use_gpu}")
generator = pipeline(
"text-generation",
model_tag,
device=0 if use_gpu else -1,
)
demo = gr.Blocks()
logging.info("launching interface...")
with demo:
gr.Markdown("# Auto-Complete Emails - Demo")
gr.Markdown(
"Enter part of an email, and a text-gen model will complete it! See details below. "
)
gr.Markdown("---")
with gr.Column():
gr.Markdown("## Generate Text")
gr.Markdown("Edit the prompt and parameters and press **Generate**!")
prompt_text = gr.Textbox(
lines=4,
label="Email Prompt",
value=default_prompt,
)
with gr.Row():
clear_button = gr.Button(
value="Clear Prompt",
)
num_gen_tokens = gr.Slider(
label="Generation Tokens",
value=64,
maximum=128,
minimum=32,
step=16,
)
generated_email = gr.Textbox(
label="Generated Result",
placeholder="The completed email will appear here",
)
email_link = gr.HTML("<p><em>A mailto: link will appear here</em></p>")
generate_button = gr.Button(
value="Generate!",
variant="primary",
)
gr.Markdown("## Advanced Options")
gr.Markdown(
"This demo generates text via beam search. See details about these parameters [here](https://huggingface.co/blog/how-to-generate), otherwise they should be fine as-is."
)
num_beams = gr.Radio(
choices=[4, 8, 16],
label="Number of Beams",
value=4,
)
with gr.Row():
no_repeat_ngram_size = gr.Radio(
choices=[1, 2, 3, 4],
label="no repeat ngram size",
value=2,
)
length_penalty = gr.Slider(
minimum=0.5,
maximum=1.0,
label="length penalty",
value=0.8,
step=0.1,
)
gr.Markdown("---")
with gr.Column():
gr.Markdown("## About")
gr.Markdown(
"[This model](https://huggingface.co/postbot/distilgpt2-emailgen) is a fine-tuned version of distilgpt2 on a dataset of 50k emails sourced from the internet, including the classic `aeslc` dataset.\n\nCheck out the model card for details on notebook & command line usage."
)
gr.Markdown(
"The intended use of this model is to provide suggestions to _auto-complete_ the rest of your email. Said another way, it should serve as a **tool to write predictable emails faster**. It is not intended to write entire emails from scratch; at least **some input** is required to guide the direction of the model.\n\nPlease verify any suggestions by the model for A) False claims and B) negation statements **before** accepting/sending something."
)
gr.Markdown("---")
clear_button.click(
fn=clear,
inputs=[prompt_text],
outputs=[prompt_text],
)
generate_button.click(
fn=generate_text,
inputs=[
prompt_text,
num_gen_tokens,
num_beams,
no_repeat_ngram_size,
length_penalty,
],
outputs=[generated_email, email_link],
)
demo.launch(
enable_queue=True,
share=True, # for local testing
)