Spaces:
Runtime error
Runtime error
File size: 8,522 Bytes
610c69b b313c5d 610c69b b313c5d 610c69b b313c5d 610c69b b313c5d 610c69b 31af865 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
def transcribe_youtube_video(url, force_transcribe=False):
text = ''
try:
from youtube_transcript_api import YouTubeTranscriptApi
import pytube
from pytube import YouTube
vid_id = pytube.extract.video_id(url)
temp = YouTubeTranscriptApi.get_transcript(vid_id)
for t in temp:
text+=t['text']+' '
yt = YouTube(str(url))
except:
pass
if text == '' or force_transcribe:
from pytube import YouTube
import torch
import os
save_dir="./docs/youtube/"
os.mkdir(save_dir)
yt = YouTube(str(url))
audio = yt.streams.filter(only_audio = True).first()
out_file = audio.download(filename="audio.mp3",output_path = save_dir)
import transformers
whisper_asr = transformers.pipeline(
"automatic-speech-recognition", model="openai/whisper-large", device_map= 'auto',
)
whisper_asr.model.config.forced_decoder_ids = (
whisper_asr.tokenizer.get_decoder_prompt_ids(
language="en",
task="transcribe"
)
)
temp = whisper_asr(out_file,chunk_length_s=20)
text = temp['text']
del(whisper_asr)
torch.cuda.empty_cache()
return yt.title, text
def summarize_text(title,text):
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains import ReduceDocumentsChain, MapReduceDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
import torch
import transformers
from transformers import BitsAndBytesConfig
from transformers import AutoTokenizer, AutoModelForCausalLM
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
# model = "nomic-ai/gpt4all-falcon"
model = "tiiuae/falcon-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model,trust_remote_code=True,)
model = AutoModelForCausalLM.from_pretrained(model,
# trust_remote_code=True,
quantization_config=quantization_config,
)
from langchain import HuggingFacePipeline
import torch
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
max_new_tokens = 150,
pad_token_id=tokenizer.eos_token_id,
# device=-1,
)
llm = HuggingFacePipeline(pipeline=pipeline)
pipeline2 = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
max_new_tokens = 250,
pad_token_id=tokenizer.eos_token_id,
repetition_penalty= 2.0,
# device=-1,
)
llm2 = HuggingFacePipeline(pipeline=pipeline2)
# Map
map_template = """
Summarize the following text in a clear and concise way:
TITLE: `{title}`
TEXT:`{docs}`
Brief Summary:
"""
map_prompt = PromptTemplate(template = map_template,
input_variables = ['title','docs'])
map_chain = LLMChain(llm=llm, prompt=map_prompt)
# Reduce - Collapse
reduce_template = """
The following is set of partial summaries of a video titled {title}:
partial summaries: {doc_summaries}
Take these and distill them into a consolidated summary.
Summary:
"""
reduce_prompt = PromptTemplate(template = reduce_template,
input_variables = ['title','doc_summaries'])
reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt)
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
collapse_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="doc_summaries"
)
# Final Reduce - Combine
final_reduce_template = """
The following is set of partial summaries of a video titled '{title}':
partial summaries:
{doc_summaries}
Generate a summary of the whole text that includes `Video Subject`, and the `Key Highlights` as maximum 10 pullet points listing the main facts, arguments, or points:
"""
final_reduce_prompt = PromptTemplate(template = final_reduce_template,
input_variables = ['title','doc_summaries'])
final_reduce_chain = LLMChain(llm=llm2, prompt=final_reduce_prompt)
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
combine_documents_chain = StuffDocumentsChain(
llm_chain=final_reduce_chain, document_variable_name="doc_summaries"
)
# Combines and iteravely reduces the mapped documents
reduce_documents_chain = ReduceDocumentsChain(
# This is final chain that is called.
combine_documents_chain=combine_documents_chain,
# If documents exceed context for `StuffDocumentsChain`
collapse_documents_chain=collapse_documents_chain,
# The maximum number of tokens to group documents into.
token_max=500,
)
# Combining documents by mapping a chain over them, then combining results
map_reduce_chain = MapReduceDocumentsChain(
# Map chain
llm_chain=map_chain,
# Reduce chain
reduce_documents_chain=reduce_documents_chain,
# The variable name in the llm_chain to put the documents in
document_variable_name="docs",
# Return the results of the map steps in the output
return_intermediate_steps=False,
)
from langchain.document_loaders import TextLoader
from langchain.text_splitter import TokenTextSplitter
with open('./docs/transcript.txt','w') as f:
f.write(text)
loader = TextLoader("./docs/transcript.txt")
doc = loader.load()
text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=0)
docs = text_splitter.split_documents(doc)
summary = map_reduce_chain.run({'input_documents':docs, 'title':title})
del(llm)
del(llm2)
del(model)
del(tokenizer)
torch.cuda.empty_cache()
return summary
import gradio as gr
import pytube
from pytube import YouTube
def get_youtube_title(url):
yt = YouTube(str(url))
return yt.title
def get_video(url):
vid_id = pytube.extract.video_id(url)
embed_html = '<iframe width="100%" height="315" src="https://www.youtube.com/embed/{}" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>'.format(vid_id)
return embed_html
def summarize_youtube_video(url,force_transcribe):
title,text = transcribe_youtube_video(url,force_transcribe)
Summary = summarize_text(title,text)
return Summary
html = '<iframe width="100%" height="315" src="https://www.youtube.com/embed/" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>'
with gr.Blocks() as demo:
# gr.Markdown("Transribe a YouTube video using this demo.")
with gr.Row():
with gr.Column(scale=3):
url = gr.Textbox(label="Enter YouTube video URL here:",placeholder="https://www.youtube.com/watch?v=")
force_transcribe = gr.Checkbox(label="Transcribe even if transcription is available.")
with gr.Column(scale=1):
gr.Markdown("# Summarize a YouTube video using this demo!",scale=2)
sum_btn = gr.Button("Summarize!",scale=1)
title = gr.Textbox(label="Video Title",placeholder="title...")
with gr.Row():
video = gr.HTML(html)
output = gr.Textbox(label="Summary",placeholder="summary...")
sum_btn.click(fn=get_youtube_title, inputs=url, outputs=title, api_name="get_youtube_title")
sum_btn.click(fn=summarize_youtube_video, inputs=[url,force_transcribe], outputs=output, api_name="summarize_youtube_video", queue=True)
sum_btn.click(fn=get_video, inputs=url, outputs=video, api_name="get_youtube_video",queue=False)
demo.queue()
demo.launch() |