File size: 17,366 Bytes
7c42e43
eb0d487
7c42e43
 
610c69b
7c42e43
 
a62e6bb
7c42e43
 
 
 
 
 
610c69b
7c42e43
 
 
 
 
610c69b
7c42e43
 
 
610c69b
7c42e43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610c69b
7c42e43
610c69b
7c42e43
 
 
610c69b
7c42e43
 
 
 
 
610c69b
7c42e43
 
 
 
 
 
 
 
8aed00f
7c42e43
 
 
 
 
 
 
 
 
 
8aed00f
7c42e43
 
 
8aed00f
7c42e43
8aed00f
7c42e43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610c69b
 
 
 
 
 
 
 
 
7c42e43
610c69b
 
 
7c42e43
 
 
3c888d1
 
7c42e43
 
 
3c888d1
 
 
7c42e43
 
 
 
 
 
 
 
610c69b
7c42e43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee2f74
 
7c42e43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610c69b
 
 
 
7c42e43
 
 
 
 
 
 
 
 
610c69b
7c42e43
 
 
 
610c69b
 
 
7c42e43
 
 
 
 
 
 
 
 
 
 
610c69b
 
7c42e43
 
 
 
 
610c69b
 
 
7c42e43
 
610c69b
 
7c42e43
 
 
 
 
 
 
 
 
3c888d1
7c42e43
610c69b
7c42e43
 
 
 
 
610c69b
 
 
7c42e43
 
610c69b
7c42e43
610c69b
 
 
 
 
 
7c42e43
 
610c69b
 
 
 
 
 
 
 
 
 
 
7c42e43
610c69b
 
 
 
7c42e43
610c69b
7c42e43
610c69b
7c42e43
610c69b
 
7c42e43
610c69b
7c42e43
 
 
 
 
610c69b
7c42e43
610c69b
 
 
 
 
 
 
 
 
 
 
 
 
 
8aed00f
 
bbb9a82
8aed00f
 
 
bbb9a82
8aed00f
bbb9a82
7c42e43
610c69b
 
 
8aed00f
 
7c42e43
8aed00f
 
7c42e43
 
 
 
 
 
 
 
610c69b
 
7c42e43
 
 
 
93ff665
610c69b
bcc3d69
7c42e43
 
eb0d487
 
7c42e43
 
 
 
8aed00f
7c42e43
 
 
8aed00f
3c888d1
 
3994376
7c42e43
 
 
610c69b
7c42e43
 
 
 
 
 
610c69b
7c42e43
 
8aed00f
7c42e43
 
 
 
 
 
 
 
 
8aed00f
 
 
7c42e43
 
 
 
 
 
8aed00f
7c42e43
 
 
 
8aed00f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import os 
save_dir= os.path.join(os.getcwd(),'docs')
if not os.path.exists(save_dir):
    os.mkdir(save_dir)

transcription_model_id = "openai/whisper-large"
llm_model_id = "tiiuae/falcon-7b-instruct"
HF_TOKEN = os.environ.get("HF_TOKEN", None)

from youtube_transcript_api import YouTubeTranscriptApi
import pytube

# get the transcript from YouTube
def get_yt_transcript(url):
    text = ''
    vid_id = pytube.extract.video_id(url)
    temp = YouTubeTranscriptApi.get_transcript(vid_id)
    for t in temp:
        text+=t['text']+' '
    return text

from pytube import YouTube
import transformers
import torch

# transcribes the video
def transcribe_yt_vid(url):
    # download YouTube video's audio
    yt = YouTube(str(url))
    audio = yt.streams.filter(only_audio = True).first()
    out_file = audio.download(filename="audio.mp3",
                              output_path = save_dir)

    # defining an automatic-speech-recognition pipeline
    asr = transformers.pipeline(
        "automatic-speech-recognition", 
        model=transcription_model_id, 
        device_map= 'auto',
    )

    # setting model config parameters
    asr.model.config.forced_decoder_ids = (
        asr.tokenizer.get_decoder_prompt_ids(
            language="en", 
            task="transcribe"
        )
    )

    # invoking the Whisper model
    temp = asr(out_file,chunk_length_s=20)
    text = temp['text']
    
    # we can do this at the end to release GPU memory
    del(asr)
    torch.cuda.empty_cache()
    
    return text

from pytube import YouTube
from huggingface_hub import InferenceClient

# transcribes the video using the Hugging Face Hub API
def transcribe_yt_vid_api(url,api_token):
    # download YouTube video's audio
    yt = YouTube(str(url))
    audio = yt.streams.filter(only_audio = True).first()
    out_file = audio.download(filename="audio.wav",
                              output_path = save_dir)
    
    # Initialize client for the Whisper model
    client = InferenceClient(model=transcription_model_id, 
                             token=api_token)

    import librosa
    import soundfile as sf

    text = ''
    t=25 # audio chunk length in seconds 
    x, sr = librosa.load(out_file, sr=None)
    # This gives x as audio file in numpy array and sr as original sampling rate
    # The audio needs to be split in 20 second chunks since the API call truncates the response
    for _,i in enumerate(range(0, (len(x)//(t * sr)) +1)):
        y = x[t * sr * i: t * sr *(i+1)]
        split_path = os.path.join(save_dir,"audio_split.wav")
        sf.write(split_path, y, sr)
        text += client.automatic_speech_recognition(split_path)

    return text

def transcribe_youtube_video(url, force_transcribe=False,use_api=False,api_token=None):
    
    yt = YouTube(str(url))
    text = ''
    # get the transcript from YouTube if available
    try:
        text = get_yt_transcript(url)
    except:
        pass
    
    # transcribes the video if YouTube did not provide a transcription 
    # or if you want to force_transcribe anyway
    if text == '' or force_transcribe:
        if use_api:
            text = transcribe_yt_vid_api(url,api_token=api_token)
            transcript_source = 'The transcript was generated using {} via the Hugging Face Hub API.'.format(transcription_model_id)
        else:
            text = transcribe_yt_vid(url)
            transcript_source = 'The transcript was generated using {} hosted locally.'.format(transcription_model_id)
    else:
        transcript_source = 'The transcript was downloaded from YouTube.'
    
    return yt.title, text, transcript_source

def summarize_text(title,text,temperature,words,use_api=False,api_token=None,do_sample=False):
    
    from langchain.chains.llm import LLMChain
    from langchain.prompts import PromptTemplate
    from langchain.chains import ReduceDocumentsChain, MapReduceDocumentsChain
    from langchain.chains.combine_documents.stuff import StuffDocumentsChain
    import torch
    import transformers
    from transformers import BitsAndBytesConfig
    from transformers import AutoTokenizer, AutoModelForCausalLM
    
    from langchain import HuggingFacePipeline
    import torch

    model_kwargs1 = {"temperature":temperature ,
                    "do_sample":do_sample,
                    "min_new_tokens":200-25,
                    "max_new_tokens":200+25,
                    'repetition_penalty':20.0
                    }
    model_kwargs2 = {"temperature":temperature ,
                    "do_sample":do_sample,
                    "min_new_tokens":words, 
                    "max_new_tokens":words+100, 
                    'repetition_penalty':20.0
                    }
    if not do_sample:
        del model_kwargs1["temperature"]
        del model_kwargs2["temperature"]

    if use_api:
        
        from langchain import HuggingFaceHub

        # os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token
        llm=HuggingFaceHub(
            repo_id=llm_model_id, model_kwargs=model_kwargs1,
            huggingfacehub_api_token=api_token
            )
        llm2=HuggingFaceHub(
            repo_id=llm_model_id, model_kwargs=model_kwargs2,
            huggingfacehub_api_token=api_token
            )
        summary_source = 'The summary was generated using {} via Hugging Face API.'.format(llm_model_id)

    else:
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True,
            )

        tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
        model = AutoModelForCausalLM.from_pretrained(llm_model_id,
                                                    # quantization_config=quantization_config
                                                    )
        model.to_bettertransformer()
        
        pipeline = transformers.pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            pad_token_id=tokenizer.eos_token_id,
            **model_kwargs1,
        )
        pipeline2 = transformers.pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            pad_token_id=tokenizer.eos_token_id,
            **model_kwargs2,
        )
        llm = HuggingFacePipeline(pipeline=pipeline)
        llm2 = HuggingFacePipeline(pipeline=pipeline2)

        summary_source = 'The summary was generated using {} hosted locally.'.format(llm_model_id)


    # Map
    map_template = """
    You are an intelligent AI assistant that is tasked to review the content of a video and provide a concise and accurate summary.\n
    You do not provide information that is not mentioned in the video. You only provide information that you are absolutely sure about.\n
    Summarize the following text in a clear and concise way:\n
    ----------------------- \n
    TITLE: `{title}`\n
    TEXT:\n
    `{docs}`\n
    ----------------------- \n
    BRIEF SUMMARY:\n
    """
    map_prompt = PromptTemplate(
        template = map_template, 
        input_variables = ['title','docs']
        )
    map_chain = LLMChain(llm=llm, prompt=map_prompt)

    # Reduce - Collapse
    collapse_template = """
    You are an intelligent AI assistant that is tasked to review the content of a video and provide a concise and accurate summary.\n
    You do not provide information that is not mentioned in the video. You only provide information that you are absolutely sure about.\n
    The following is set of partial summaries of a video:\n
    ----------------------- \n
    TITLE: `{title}`\n
    PARTIAL SUMMARIES:\n
    `{doc_summaries}`\n 
    ----------------------- \n
    Take these and distill them into a consolidated summary.\n
    SUMMARY:\n
    """

    collapse_prompt = PromptTemplate(
        template = collapse_template, 
        input_variables = ['title','doc_summaries']
        )
    collapse_chain = LLMChain(llm=llm, prompt=collapse_prompt)

    # Takes a list of documents, combines them into a single string, and passes this to an LLMChain
    collapse_documents_chain = StuffDocumentsChain(
        llm_chain=collapse_chain, document_variable_name="doc_summaries"
        )

    # Final Reduce - Combine
    combine_template = """\n
    You are an intelligent AI assistant that is tasked to review the content of a video and provide a concise and accurate summary.\n
    You do not provide information that is not mentioned in the video. You only provide information that you are absolutely sure about.\n
    The following is a set of partial summaries of a video:\n
    ----------------------- \n
    TITLE: `{title}`\n
    PARTIAL SUMMARIES:\n
    `{doc_summaries}`\n 
    ----------------------- \n
    Generate an executive summary of the whole text in maximum {words} words that contains the main messages, points, and arguments presented in the video as bullet points. Avoid duplications or redundant information. \n
    EXECUTIVE SUMMARY:\n
    """
    combine_prompt = PromptTemplate(
        template = combine_template, 
        input_variables = ['title','doc_summaries','words']
        )
    combine_chain = LLMChain(llm=llm2, prompt=combine_prompt)

    # Takes a list of documents, combines them into a single string, and passes this to an LLMChain
    combine_documents_chain = StuffDocumentsChain(
        llm_chain=combine_chain, document_variable_name="doc_summaries"
        )

    # Combines and iteratively reduces the mapped documents
    reduce_documents_chain = ReduceDocumentsChain(
        # This is final chain that is called.
        combine_documents_chain=combine_documents_chain,
        # If documents exceed context for `StuffDocumentsChain`
        collapse_documents_chain=collapse_documents_chain,
        # The maximum number of tokens to group documents into.
        token_max=800,
        )

    # Combining documents by mapping a chain over them, then combining results
    map_reduce_chain = MapReduceDocumentsChain(
        # Map chain
        llm_chain=map_chain,
        # Reduce chain
        reduce_documents_chain=reduce_documents_chain,
        # The variable name in the llm_chain to put the documents in
        document_variable_name="docs",
        # Return the results of the map steps in the output
        return_intermediate_steps=False,
        )

    from langchain.document_loaders import TextLoader
    from langchain.text_splitter import TokenTextSplitter
    
    with open(save_dir+'/transcript.txt','w') as f:
        f.write(text)
    loader = TextLoader(save_dir+"/transcript.txt")
    doc = loader.load()
    text_splitter = TokenTextSplitter(chunk_size=800, chunk_overlap=100)
    docs = text_splitter.split_documents(doc)

    summary = map_reduce_chain.run({'input_documents':docs, 'title':title, 'words':words})

    try:
        del(map_reduce_chain,reduce_documents_chain,combine_chain,collapse_documents_chain,map_chain,collapse_chain,llm,llm2,pipeline,pipeline2,model,tokenizer)
    except:
        pass
    torch.cuda.empty_cache()

    return summary, summary_source

import gradio as gr 
import pytube
from pytube import YouTube

def get_youtube_title(url):
    yt = YouTube(str(url))
    return yt.title

def get_video(url):
    vid_id = pytube.extract.video_id(url)
    embed_html = '<iframe width="100%" height="315" src="https://www.youtube.com/embed/{}" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>'.format(vid_id)
    return embed_html

def summarize_youtube_video(url,force_transcribe,api_token="",
                            temperature=1.0,words=150,do_sample=True):
    print("URL:",url)
    if api_token == "":
        api_token = HF_TOKEN
    title,text,transcript_source = transcribe_youtube_video(url,force_transcribe,True,api_token)
    print("Transcript:",text[:500])
    summary, summary_source = summarize_text(title,text,temperature,words,True,api_token,do_sample)
    print("Summary:",summary)
    return summary, text, transcript_source, summary_source

html = '<iframe width="100%" height="315" src="https://www.youtube.com/embed/" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>'

# def change_transcribe_api(vis):
#     return gr.Checkbox(value=False, visible=vis)

# def change_api_token(vis):
#     return gr.Textbox(visible=vis)

def update_source(source):
    return gr.Textbox(info=source)

def show_temp(vis):
    return gr.Slider(visible=vis)

# Defining the structure of the UI
with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown("# Summarize a YouTube Video")
    
    with gr.Row():
        with gr.Column(scale=4):
            url = gr.Textbox(label="Enter YouTube video URL here:",placeholder="https://www.youtube.com/watch?v=",info="The video must not be age-restricted. Otherwise, the transcription will fail. The demo supports videos in English language only.")
        with gr.Column(scale=1):
            api_token = gr.Textbox(label="Paste your Hugging Face API token here (Optional):",placeholder="hf_...",visible=True,show_label=True,info='The API token passed via this field is not stored. It is only passed through the Hugging Face Hub API for inference.')
        with gr.Column(scale=1):
            sum_btn = gr.Button("Summarize!")
            gr.Markdown("Please like the repo if you find this helpful. Detailed instructions for recreating this tool are provided [here](https://pub.towardsai.net/a-complete-guide-for-creating-an-ai-assistant-for-summarizing-youtube-videos-part-1-32fbadabc2cc?sk=34269402931178039c4c3589df4a6ec5) and [here](https://pub.towardsai.net/a-complete-guide-for-creating-an-ai-assistant-for-summarizing-youtube-videos-part-2-a008ee18f341?sk=d59046b36a52c74dfa8befa99183e5b6).")


    with gr.Accordion("Transcription Settings",open=False):
        with gr.Row():
            force_transcribe = gr.Checkbox(label="Transcribe even if transcription is available.", info='If unchecked, the app attempts to download the transcript from YouTube first. Check this if the transcript does not seem accurate.')
            # use_transcribe_api = gr.Checkbox(label="Transcribe using the HuggingFaceHub API.",visible=False)
        
    with gr.Accordion("Summarization Settings",open=False):
        with gr.Row():
            # use_llm_api = gr.Checkbox(label="Summarize using the HuggingFaceHub API.",visible=True)
            do_sample = gr.Checkbox(label="Set the Temperature",value=False,visible=True)
            temperature = gr.Slider(minimum=0.01,maximum=1.0,value=0.25,label="Generation temperature",visible=False)
            words = gr.Slider(minimum=100,maximum=500,value=200,label="Length of the summary")
            
    gr.Markdown("# Results")

    title = gr.Textbox(label="Video Title",placeholder="title...")
    
    with gr.Row():
        video = gr.HTML(html,scale=1)
        summary_source = gr.Textbox(visible=False,scale=0)
        summary = gr.Textbox(label="Summary",placeholder="summary...",scale=1)
    
    with gr.Row():
        with gr.Group():
            transcript = gr.Textbox(label="Full Transcript",placeholder="transcript...",show_label=True)
            transcript_source = gr.Textbox(visible=False)

    with gr.Accordion("Notes",open=False):
        gr.Markdown("""
                    1. This app attempts to download the transcript from Youtube first. If the transcript is not available, or the prompts require, the video will be transcribed.\n
                    2. The app performs best on videos in which the number of speakers is limited or when the YouTube transcript includes annotations of the speakers.\n 
                    3. The trascription does not annotate the speakers which may downgrade the quality of the summary if there are more than one speaker.\n
                    """)
    
    # Defining the interactivity of the UI elements
    # force_transcribe.change(fn=change_transcribe_api,inputs=force_transcribe,outputs=use_transcribe_api)
    # use_transcribe_api.change(fn=change_api_token,inputs=use_transcribe_api,outputs=api_token)    
    # use_llm_api.change(fn=change_api_token,inputs=use_llm_api,outputs=api_token)
    transcript_source.change(fn=update_source,inputs=transcript_source,outputs=transcript)
    summary_source.change(fn=update_source,inputs=summary_source,outputs=summary)
    do_sample.change(fn=show_temp,inputs=do_sample,outputs=temperature)
    
    # Defining the functions to call on clicking the button
    sum_btn.click(fn=get_youtube_title, inputs=url, outputs=title, api_name="get_youtube_title", queue=False)
    sum_btn.click(fn=summarize_youtube_video, inputs=[url,force_transcribe,api_token,temperature,words,do_sample], 
                  outputs=[summary,transcript, transcript_source, summary_source], api_name="summarize_youtube_video", queue=True)
    sum_btn.click(fn=get_video, inputs=url, outputs=video, api_name="get_youtube_video", queue=False)

demo.queue()
demo.launch(share=False)