File size: 2,051 Bytes
756d547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8061c1
90a2343
a8061c1
cce5c46
 
 
a8061c1
756d547
90a2343
dacdb7e
90a2343
 
a8061c1
 
756d547
a8061c1
 
756d547
 
a8061c1
 
756d547
 
90a2343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# import gradio as gr
# from transformers import pipeline

# # Load the pre-trained model
# generator = pipeline("question-answering", model="EleutherAI/gpt-neo-2.7B")

# # Define Gradio interface
# def generate_response(prompt):
#     # Generate response based on the prompt
#     response = generator(prompt, max_length=50, do_sample=True, temperature=0.9)
#     return response[0]['generated_text']

# # Create Gradio interface
# iface = gr.Interface(
#     fn=generate_response,
#     inputs="text",
#     outputs="text",
#     title="OpenAI Text Generation Model",
#     description="Enter a prompt and get a generated text response.",
# )

# # Deploy the Gradio interface
# iface.launch(share=True)

import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "microsoft/phi-2"
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

def generate_answer(question):
    inputs = tokenizer.encode("Question: " + question, return_tensors="pt")
    outputs = model.generate(inputs, max_length=2000, num_return_sequences=1, do_sample=True)
    answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return answer

iface = gr.Interface(
    fn=generate_answer,
    inputs="text",
    outputs="text",
    title="Open-Domain Question Answering",
    description="Enter your question to get an answer.",
)

iface.launch(share=True)  # Deploy the interface


# from transformers import AutoModelForCausalLM, AutoTokenizer

# model_name = "abacusai/Smaug-72B-v0.1"
# model = AutoModelForCausalLM.from_pretrained(model_name)
# tokenizer = AutoTokenizer.from_pretrained(model_name)





# def generate_answer(question):
#     inputs = tokenizer.encode("Question: " + question, return_tensors="pt")
#     outputs = model.generate(inputs, max_length=100, num_return_sequences=1, early_stopping=True, do_sample=True)
#     answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
#     return answer