File size: 17,214 Bytes
21f0f40
 
 
 
 
 
 
 
 
 
 
 
 
 
5bdc65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21f0f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6561d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21f0f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40b1107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21f0f40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bd5f7
21f0f40
 
 
 
 
 
 
 
 
 
 
b5ad935
21f0f40
 
b5ad935
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# -*- coding: utf-8 -*-
"""gpt-dev.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1wAoJHP666APJNiFpvBVvJRpMwe04P4_1
"""

# when you restart a Jupyter Notebook, even if you see the outputs from the previous session, the variables, functions, and states in memory are lost. You need to re-run the cells to reload everything into memory.
import torch
import torch.nn as nn
from torch.nn import functional as F

import urllib.request

# Function to download the file and read its contents
def load_text_file(url):
    """Download and read the contents of a text file."""
    # Download the file
    response = urllib.request.urlopen(url)
    content = response.read().decode('utf-8')  # Read and decode the content
    return content

# URL to download the text file
url = "https://raw.githubusercontent.com/PratyushChaudhary/My-LLM/refs/heads/main/cleaned_text_output.txt"

# Load the text into the variable `text`
text = load_text_file(url)


# Get no. of characters you are dealing with plus it's count
chars = sorted(list(set(text))) # all content in sorted order
vocab_size = len(chars) # no. of characters in file
# print(''.join(chars)) # join of these characters, unique ones
# print(vocab_size)

# hyperparameters
batch_size = 64 # how many independent sequences will we process in parallel?
block_size = 256 # what is the maximum content length for predictions?
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
n_embd = 384
n_head = 6
n_layer = 6
dropout = 0.2
#----
torch.manual_seed(1337)

# create a mapping from characters to integers
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string

# # This code offers a very basic form of tokeniser, wherein the seuqence of integers is long but the integers in the sequence are small, in other words the vocabulary is small

# print(encode("hi there"))
# print(decode(encode("hi there")))

# let's now tokenise/encode our whole set of text
import torch # import PyTorch library
data = torch.tensor(encode(text), dtype=torch.long)

# data.shape returns tuple representing dimensions of tensor
'''
Tensor:
A fundamental data structure in ML.
A multi-dimensional array used to store data. It generalizes matrices to higher dimensions and can be thought of as a container for numerical data.
'''
# print(data.shape, data.dtype)

# print(data[:1000]) # the first 1000 characters, this is how the GPT will look our words

# This would be used to check at the end as how well our model is overfitting.
'''
Overfitting:
Overfitting is a common problem in machine learning and statistical modeling where a model learns not just the underlying patterns in the training data but also the noise or random fluctuations. This results in a model that performs very well on the training data but poorly on new, unseen data.
'''

# Let's now split up the data into train and validation sets
n = int(0.9*len(data)) # first 90% will be train data, rest would be validation
train_data = data[:n]
val_data = data[n:]

# We will train the transformer on chunks of dataset/text so that it's computationally inexpensive
# block size states the max length of our chunks
# block_size = 8
# train_data[:block_size+1]
# predictions are made on the basis of relative positions of these tokens

# x = train_data[:block_size]
# y = train_data[1:block_size+1]
# for t in range(block_size):
#     context = x[:t+1]
#     target = y[t]
#     print(f"When input is {context} the target: {target}")

# Using the below code you ensure that any random numbers generated by PyTorch are reproducible, which means when you run the code multiple times, you'll get the same random numbers each time.
# This is useful for debugging or comparing results.
# The specific value doesn't matter, it's just used to initialise the random number generator in a consistent way.
# torch.manual_seed(1337)
# batch_size = 4 # how many independent sequences will we process in parallel?
# block_size = 8 # what is the maximum context length for predictions?
if __name__ == "__main__":
    # Training logic (if any) goes here
    # This will only run when you execute gpt_dev.py directly, not when it's imported
    def get_batch(split):
        # generate a small batch of data of inputs x and targets y
        data  = train_data if split == 'train' else val_data
        # The below code generates batch_size (4) nos. in the range 0 to len(data)-block_size (exclusive)
        # These integers, stored in ix, are used as starting indexes to slice the data
        ix = torch.randint(len(data) - block_size, (batch_size,))
        # stack up the rows into a tensor
        x = torch.stack([data[i:i+block_size] for i in ix])
        y = torch.stack([data[i+1:i+block_size+1] for i in ix])
        x, y = x.to(device), y.to(device)
        return x, y

    @torch.no_grad()
    def estimate_loss():
        out = {}
        model.eval()
        for split in {'train', 'val'}:
            losses = torch.zeros(eval_iters)
            for k in range(eval_iters):
                X, Y = get_batch(split)
                logits, loss = model(X, Y)
                losses[k] = loss.item()
            out[split] = losses.mean()
        model.train()
        return out
    pass


# xb, yb = get_batch('train')
# print('inputs:')
# print(xb.shape)
# print(xb)
# print('targets:')
# print(yb.shape)
# print(yb)

# print('----')

# for b in range(batch_size): # batch dimension
#     for t in range(block_size): # time dimension
#         context = xb[b, :t+1]
#         target = yb[b, t]
#         print(f"when input is {context.tolist()} the target: {target}")

# import torch.nn as nn
# # below syntax is such because nn is a submodule of torch, and Python needs the full module path (torch.nn) to find the functional module correctly.
# from torch.nn import functional as F
# torch.manual_seed(1337)

class Head(nn.Module):
    '''one head of self-attention'''
    def __init__(self, head_size):
        super().__init__()
        self.key = nn.Linear(n_embd, head_size, bias = False)
        self.query = nn.Linear(n_embd, head_size, bias = False)
        self.value = nn.Linear(n_embd, head_size, bias = False)
        self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))

        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        B, T, C = x.shape
        k = self.key(x) # (B, T, C)
        q = self.query(x) # (B, T, C)
        # complete attention scores ("affinities")
        wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)        wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
        wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
        wei = F.softmax(wei, dim=-1) # (B, T, T)
        wei = self.dropout(wei)
        # perform the weighted aggregation of the values
        v = self.value(x) # (B, T, C)
        out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
        return out

class MultiHeadAttention(nn.Module):
    '''multiple heads of self-attention in parallel'''

    def __init__(self, num_heads, head_size):
        super().__init__()
        self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
        self.proj = nn.Linear(head_size * num_heads, n_embd)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        out = torch.cat([h(x) for h in self.heads], dim = -1)
        out = self.dropout(self.proj(out))
        return out

class FeedForward(nn.Module):
    ''' a simple linear layer followed by a non-linearity '''

    def __init__(self, n_embd):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(n_embd, 4 * n_embd),
            nn.ReLU(),
            nn.Linear(4 * n_embd, n_embd),
            nn.Dropout(dropout),
        )

    def forward(self, x):
        return self.net(x)

class Block(nn.Module):
    '''Transformer block: communication followed by computation'''

    def __init__(self, n_embd, n_head):
        # n_embd: embedding dimension, n_head: the number of heads we'd like
        super().__init__()
        head_size = n_embd // n_head
        self.sa = MultiHeadAttention(n_head, head_size)
        self.ffwd = FeedForward(n_embd)
        self.ln1 = nn.LayerNorm(n_embd)
        self.ln2 = nn.LayerNorm(n_embd)

    def forward(self, x):
        x = x + self.sa(self.ln1(x))
        x = x + self.ffwd(self.ln2(x))
        return x


# A bigram langauge model is a type of statistical language model that predicts the probability of a word based on the preceding word. It assumes that the occurence of a word depends only on the previous word.
class GPTLanguageModel(nn.Module):

    def __init__(self):
        super().__init__()
        # each token directly reads off the logits for the next token from a lookup table
        # nn.Embedding(vocab_size, vocab_size): vocab_size is the size of the vocabulary; each token is represented by a vector of size vocab_size, effectively creating a look up table of token embeddings.
        self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
        self.position_embedding_table = nn.Embedding(block_size, n_embd)
        self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
        self.ln_f = nn.LayerNorm(n_embd) # final layer norm
        # self.blocks = nn.Sequential(
        #     Block(n_embd, n_head = 4),
        #     Block(n_embd, n_head = 4),
        #     Block(n_embd, n_head = 4),
        #     nn.LayerNorm(n_embd),
        # )
        # self.sa_heads = MultiHeadAttention(4, n_embd//4) # i.e. 4 heads of 8-dimensional self-attention
        # self.ffwd = FeedForward(n_embd)
        self.lm_head = nn.Linear(n_embd, vocab_size)
        self.apply(self._init_weights)

    def _init_weights(self, module):
      if isinstance(module, nn.Linear):
        torch.nn.init.normal_(module.weight, mean = 0.0, std = 0.02)
        if module.bias is not None:
          torch.nn.init.zeros_(module.bias)
      elif isinstance(module, nn.Embedding):
        torch.nn.init.normal_(module.weight, mean = 0.0, std = 0.02)

    # docstrings to be placed at same indentation to avoid confusion
    '''
    Batch is the number of sequences in the batch.
    Time is the length of each sequence.
    Channels is the size of the embedding (equal to vocab_size).
    '''

    # In context of neural networks, the "forward pass" refers to the process of passing input data through the network to obtain predictions or outputs.
    def forward(self, idx, targets = None):
        B, T = idx.shape

        # idx and targets are both (B,T) tensor of integers
        tok_emb = self.token_embedding_table(idx) # (Batch, Time, Channels) Batch -> 4 Time -> 8 Channels -> vocab_size
        pos_emb = self.position_embedding_table(torch.arange(T, device = device)) # (T, C)
        x = tok_emb + pos_emb # (B, T, C)
        # x = self.sa_heads(x) # apply one head of self attention. (B, T, C)
        # x = self.ffwd(x) # (B, T, C)
        x = self.blocks(x) # (B, T, C)
        x = self.ln_f(x) # (B, T, C)
        logits = self.lm_head(x) # (B, T, vocab_size)

        # if no targets, there's no loss to compute.
        if targets is None:
            loss = None
        else:
            # reshaping our logits such that they align with the syntax of cross_entropy
            B, T, C = logits.shape
            logits = logits.view(B*T, C)
            targets = targets.view(B*T)

            # quality of prediction wrt targets
            # It can be understood as a probability distribution where the correct dimension would be looking like a peak
            loss = F.cross_entropy(logits, targets)

        return logits, loss

    # defines the method to generate new tokens based on the current sequence idx.
    def generate(self, idx, max_new_tokens):
        # idx is (B, T) array of indices in the current context
        for _ in range(max_new_tokens):
            # crop idx to the last block_size tokens
            idx_cond = idx[:, -block_size:]
            # get the predictions
            logits, loss = self(idx_cond)
            # focus only on the last time step
            logits = logits[:, -1, :] # becomes (B, C)
            # apply softmax ro get probabilities
            probs = F.softmax(logits, dim = -1) # (B, C)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples = 1) # (B, 1)
            # append sampled index to the running sequence
            idx = torch.cat((idx, idx_next), dim = 1) # (B, T+1)
        return idx
model = GPTLanguageModel()
m = model.to(device)
# logits, loss = m(xb, yb)
# print(logits.shape)
# print(loss)


# print(decode(m.generate(idx = torch.zeros((1, 1), dtype = torch.long), max_new_tokens = 100)[0].tolist()))

# m = model.to(device)
# create a PyTorch optimiser
optimiser = torch.optim.AdamW(model.parameters(), lr = learning_rate)

# batch_size = 32 # This specifies that 32 samples will be processed in one training step called batch.
# for steps in range(50000): # This loop will run for 100 steps. Each step is one iteration of training using a batch of data.
#     # sample a batch of data
#     xb, yb = get_batch('train')
#     # evaluate the loss
#     # logits are the raw output of the model before any activation function, representing the predicted probabilities for each class.
#     logits, loss = m(xb, yb)
#     optimiser.zero_grad(set_to_none = True)
#     loss.backward()
#     optimiser.step()

# print(loss.item())
def train_model(self, max_iters, eval_interval, optimiser):
    for iter in range(max_iters):
        # every once in a while evaluate the loss on train and val sets
        if iter % eval_interval == 0 or iter == max_iters - 1:
            losses = estimate_loss()
            print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")

        # sample a batch of data
        xb, yb = get_batch('train')

        # evaluate the loss
        logits, loss = model(xb, yb)
        optimiser.zero_grad(set_to_none = True)
        loss.backward()
        optimiser.step()

# generate from the model
context = torch.zeros((1,1), dtype = torch.long, device = device)

"""## The mathematical trick in self-attention"""

# consider the following toy example:

torch.manual_seed(1337)
B, T, C = 4, 8, 2 # batch, time, channels
x = torch.randn(B, T, C)
x.shape

# We want x[b, t] = mean_{i<=t} x[b, i]
xbow = torch.zeros((B, T, C))
for b in range(B):
    for t in range(T):
        xprev = x[b, :t+1] # (t, C)
        xbow[b, t] = torch.mean(xprev, 0)

# version 2
wei = torch.tril(torch.ones(T, T))
wei = wei / wei.sum(1, keepdim = True)
xbow2 = wei @ x # (B, T, T) @ (B, T, C) ---> (B, T, C)
torch.allclose(xbow, xbow2)

# version 3: use Softmax
tril = torch.tril(torch.ones(T, T))
wei = torch.zeros((T, T))
wei = wei.masked_fill(tril == 0, float('-inf'))
wei = F.softmax(wei, dim = -1)
xbow3 = wei @ x
torch.allclose(xbow, xbow3)

# version 4: self-attention!
torch.manual_seed(1337)
B, T, C = 4, 8, 32 # batch, time, channels
x = torch.randn(B, T, C)

# let's see a single Head perform self-attention
head_size = 16
key = nn.Linear(C, head_size, bias = False)
query = nn.Linear(C, head_size, bias = False)
value = nn.Linear(C, head_size, bias = False)
k = key(x) # (B, T, 16)
q = query(x) # (B, T, 16)
wei = q @ k.transpose(-2, -1) # (B, T, 16) @ (B, 16, T) ---> (B, T, T)

tril = torch.tril(torch.ones(T, T))
# wei = torch.zeros((T, T))
wei = wei.masked_fill(tril == 0, float('-inf'))
wei = F.softmax(wei, dim = -1)

v = value(x)
out = wei @ v

k = torch.randn(B, T, head_size)
q = torch.randn(B, T, head_size)
wei = q @ k.transpose(-2, -1) * head_size**(-0.5)

torch.softmax(torch.tensor([0.1, -0.2, 0.3, -0.2, 0.5]), dim = -1)

# returns the lower triangular part of the given matrix
torch.tril(torch.ones(3, 3))

# we can be very efficient doing the above thing using matrix multiplication
torch.manual_seed(42)
a = torch.tril(torch.ones(3, 3))
# using the below syntax would get us the sum for every row in a as 1
a = a / torch.sum(a, 1, keepdim = True)
b = torch.randint(0, 10, (3, 2)).float()
c = a @ b

def generate_text(model, start_prompt, max_length=256, temperature=1.0):
    input_ids = torch.tensor(encode(start_prompt), dtype=torch.long).unsqueeze(0).to(device)
    model.eval()
    generated_ids = input_ids.tolist()[0]
    with torch.no_grad():
        for _ in range(max_length):
            logits, _ = model(input_ids)
            logits = logits[:, -1, :] / temperature
            probs = torch.nn.functional.softmax(logits, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            generated_ids.append(next_token.item())
            input_ids = torch.cat((input_ids, next_token), dim=1)
    return decode(generated_ids)


if __name__ == "__main__":
    train_model()