Pratyush Chaudhary
commited on
Commit
·
b43ca4c
1
Parent(s):
f370359
Add application file
Browse files- app.py +39 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load your model and tokenizer from Hugging Face
|
6 |
+
model_name = "praty7717/Odeyssey" # Your Hugging Face repo name
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
m = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Function to generate text from a prompt
|
11 |
+
def generate_text(model, prompt, max_length=100):
|
12 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
13 |
+
|
14 |
+
# Generate the output
|
15 |
+
with torch.no_grad():
|
16 |
+
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1)
|
17 |
+
|
18 |
+
# Decode the generated text
|
19 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
20 |
+
return generated_text
|
21 |
+
|
22 |
+
# Streamlit interface
|
23 |
+
st.title("Odeyssey: Poetic Generator")
|
24 |
+
st.write("Enter a prompt to generate poetry:")
|
25 |
+
|
26 |
+
# Input prompt field
|
27 |
+
prompt = st.text_input("Prompt:", value="Once upon a time") # Default start prompt
|
28 |
+
|
29 |
+
# Button to trigger text generation
|
30 |
+
if st.button("Generate"):
|
31 |
+
if prompt:
|
32 |
+
# Generate text using the model
|
33 |
+
generated_text = generate_text(m, prompt, max_length=100)
|
34 |
+
|
35 |
+
# Display the generated text
|
36 |
+
st.subheader("Generated Text:")
|
37 |
+
st.write(generated_text)
|
38 |
+
else:
|
39 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
transformers
|