praty7717 commited on
Commit
b8f51eb
·
verified ·
1 Parent(s): ccbb326

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -2
app.py CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
2
  import torch
3
  from transformers import GPT2Tokenizer
4
 
 
5
  class GPTLanguageModel(torch.nn.Module):
6
  def __init__(self, vocab_size, hidden_size):
7
  super(GPTLanguageModel, self).__init__()
@@ -15,14 +16,25 @@ class GPTLanguageModel(torch.nn.Module):
15
  # Custom generation logic here
16
  return input_ids # Placeholder
17
 
 
 
 
 
 
 
 
 
 
 
 
18
  # Load tokenizer and model
19
  tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # Or your custom tokenizer
20
  vocab_size = tokenizer.vocab_size
21
- model = GPTLanguageModel(vocab_size=vocab_size, hidden_size=768) # Set the sizes appropriately
22
 
23
  # Load model weights
24
  try:
25
- model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False)
26
  except RuntimeError as e:
27
  print(f"Error loading model weights: {e}")
28
 
 
2
  import torch
3
  from transformers import GPT2Tokenizer
4
 
5
+ # Define your model
6
  class GPTLanguageModel(torch.nn.Module):
7
  def __init__(self, vocab_size, hidden_size):
8
  super(GPTLanguageModel, self).__init__()
 
16
  # Custom generation logic here
17
  return input_ids # Placeholder
18
 
19
+ # Define the Custom Text Generation Pipeline
20
+ class CustomTextGenerationPipeline:
21
+ def __init__(self, model, tokenizer):
22
+ self.model = model
23
+ self.tokenizer = tokenizer
24
+
25
+ def __call__(self, prompt, max_length=100):
26
+ input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
27
+ generated_ids = self.model.generate(input_ids, max_length=max_length)
28
+ return self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
29
+
30
  # Load tokenizer and model
31
  tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # Or your custom tokenizer
32
  vocab_size = tokenizer.vocab_size
33
+ model = GPTLanguageModel(vocab_size=vocab_size, hidden_size=768) # Set sizes appropriately
34
 
35
  # Load model weights
36
  try:
37
+ model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu'), weights_only=True), strict=False)
38
  except RuntimeError as e:
39
  print(f"Error loading model weights: {e}")
40