pritamdeka's picture
Update app.py
5b24777
raw
history blame
13.7 kB
import nltk
import re
nltk.download('wordnet')
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
nltk.download('maxent_ne_chunker')
nltk.download('words')
nltk.download('brown')
from newspaper import Article
from newspaper import fulltext
import requests
import itertools
from nltk.tokenize import word_tokenize
from sentence_transformers import SentenceTransformer
import pandas as pd
import numpy as np
from pandas import ExcelWriter
from torch.utils.data import DataLoader
import math
from sentence_transformers import models, losses
from sentence_transformers import SentencesDataset, LoggingHandler, SentenceTransformer
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import *
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics.pairwise import cosine_similarity
import scipy.spatial
import networkx as nx
from nltk.tokenize import sent_tokenize
import scispacy
import spacy
import en_core_sci_lg
import string
from nltk.stem.wordnet import WordNetLemmatizer
import gradio as gr
import inflect
from Bio import Entrez
from sklearn.cluster import KMeans
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_samples, silhouette_score, davies_bouldin_score
import json
from xml.etree import ElementTree as ET
p = inflect.engine()
nlp = en_core_sci_lg.load()
sp = en_core_sci_lg.load()
all_stopwords = sp.Defaults.stop_words
def remove_stopwords(sen):
sen_new = " ".join([i for i in sen if i not in stop_words])
return sen_new
def keyphrase_generator(article_link, model_1, model_2, max_num_keywords, model_3):
word_embedding_model = models.Transformer(model_3)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False)
embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
element=[]
cluster_list_final=[]
comb_list=[]
comb=[]
title_list=[]
titles_list=[]
abstracts_list=[]
silhouette_score_list=[]
final_textrank_list=[]
document=[]
text_doc=[]
final_list=[]
score_list=[]
sum_list=[]
model_1 = SentenceTransformer(model_1)
model_2 = SentenceTransformer(model_2)
url = article_link
html = requests.get(url).text
article = fulltext(html)
corpus=sent_tokenize(article)
indicator_list=['concluded','concludes','in a study', 'concluding','conclude','in sum','in a recent study','therefore','thus','so','hence',
'as a result','accordingly','consequently','in short','proves that','shows that','suggests that','demonstrates that','found that','observed that',
'indicated that','suggested that','demonstrated that']
count_dict={}
for l in corpus:
c=0
for l2 in indicator_list:
if l.find(l2)!=-1:#then it is a substring
c=1
break
if c:#
count_dict[l]=1
else:
count_dict[l]=0
for sent, score in count_dict.items():
score_list.append(score)
clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ").tolist()
corpus_embeddings = model_1.encode(clean_sentences_new)
sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
for i in range(len(clean_sentences_new)):
len_embeddings=(len(corpus_embeddings[i]))
for j in range(len(clean_sentences_new)):
if i != j:
if(len_embeddings == 1024):
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,1024), corpus_embeddings[j].reshape(1,1024))[0,0]
elif(len_embeddings == 768):
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,768), corpus_embeddings[j].reshape(1,768))[0,0]
nx_graph = nx.from_numpy_array(sim_mat)
scores = nx.pagerank(nx_graph)
sentences=((scores[i],s) for i,s in enumerate(corpus))
for elem in sentences:
element.append(elem[0])
for sc, lst in zip(score_list, element): ########## taking the scores from both the lists
sum1=sc+lst
sum_list.append(sum1)
x=sorted(((sum_list[i],s) for i,s in enumerate(corpus)), reverse=True)
for elem in x:
final_textrank_list.append(elem[1])
a=int((10*len(final_textrank_list))/100.0)
if(a<5):
total=5
else:
total=int(a)
for i in range(total):
document.append(final_textrank_list[i])
doc=" ".join(document)
for i in document:
doc_1=nlp(i)
text_doc.append([X.text for X in doc_1.ents])
entity_list = [item for sublist in text_doc for item in sublist]
entity_list = [word for word in entity_list if not word in all_stopwords]
entity_list = [word_entity for word_entity in entity_list if(p.singular_noun(word_entity) == False)]
entity_list=list(dict.fromkeys(entity_list))
doc_embedding = model_2.encode([doc])
candidates=entity_list
candidate_embeddings = model_2.encode(candidates)
distances = cosine_similarity(doc_embedding, candidate_embeddings)
top_n = max_num_keywords
keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]]
keywords = '\n'.join(keyword_list)
c_len=(len(keyword_list))
keyword_embeddings = embedder.encode(keyword_list)
data_embeddings = embedder.encode(keyword_list)
for num_clusters in range(1, top_n):
clustering_model = KMeans(n_clusters=num_clusters)
clustering_model.fit(keyword_embeddings)
cluster_assignment = clustering_model.labels_
clustered_sentences = [[] for i in range(num_clusters)]
for sentence_id, cluster_id in enumerate(cluster_assignment):
clustered_sentences[cluster_id].append(keyword_list[sentence_id])
cl_sent_len=(len(clustered_sentences))
list_cluster=list(clustered_sentences)
a=len(list_cluster)
cluster_list_final.append(list_cluster)
if (c_len==cl_sent_len and c_len>=3) or cl_sent_len==1:
silhouette_avg = 0
silhouette_score_list.append(silhouette_avg)
elif c_len==cl_sent_len==2:
silhouette_avg = 1
silhouette_score_list.append(silhouette_avg)
else:
silhouette_avg = silhouette_score(keyword_embeddings, cluster_assignment)
silhouette_score_list.append(silhouette_avg)
res_dict = dict(zip(silhouette_score_list, cluster_list_final))
cluster_items=res_dict[max(res_dict)]
for i in cluster_items:
z=' OR '.join(i)
comb.append("("+z+")")
comb_list.append(comb)
combinations = []
for subset in itertools.combinations(comb, 2):
combinations.append(subset)
f1_list=[]
for s in combinations:
final = ' AND '.join(s)
f1_list.append("("+final+")")
f_1=' OR '.join(f1_list)
final_list.append(f_1)
ncbi_url='https://eutils.ncbi.nlm.nih.gov/entrez/eutils/'
last_url='esearch.fcgi?db=pubmed'+'&term='+f_1
search_rettype = '&rettype=json'
overall_url=ncbi_url+last_url+search_rettype+'&sort=relevance'
pubmed_search_request = requests.get(overall_url)
root = ET.fromstring(pubmed_search_request.text)
levels = root.findall('.//Id')
search_id_list=[]
for level in levels:
name = level.text
search_id_list.append(name)
all_search_ids = ','.join(search_id_list)
fetch_url='efetch.fcgi?db=pubmed'
search_id='&id='+all_search_ids
ret_type='&rettype=text'
ret_mode='&retmode=xml'
ret_max='&retmax=10'
ret_sort='&sort=relevance'
return_url=ncbi_url+fetch_url+search_id+ret_type+ret_mode+ret_max+ret_sort
pubmed_abstract_request = requests.get(return_url)
root_1 = ET.fromstring(pubmed_abstract_request.text)
article_title = root_1.findall('.//ArticleTitle')
for a in article_title:
article_title_name = a.text
titles_list.append(article_title_name)
article_abstract = root_1.findall('.//AbstractText')
for b in article_abstract:
article_abstract_name = b.text
abstracts_list.append(article_abstract_name)
mydict = {'Title': titles_list, 'Abstract':abstracts_list}
df_new = pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in mydict.items() ]))
df_final = df_new.fillna(' ')
return df_final
igen_pubmed = gr.Interface(keyphrase_generator,
inputs=[gr.inputs.Textbox(lines=1, placeholder="Provide article web link here",default="", label="Article web link"),
gr.inputs.Dropdown(choices=['sentence-transformers/all-mpnet-base-v2',
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/all-distilroberta-v1',
'sentence-transformers/gtr-t5-large',
'pritamdeka/S-Bluebert-snli-multinli-stsb',
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
'sentence-transformers/stsb-mpnet-base-v2',
'sentence-transformers/stsb-roberta-base-v2',
'sentence-transformers/stsb-distilroberta-base-v2',
'sentence-transformers/sentence-t5-large',
'sentence-transformers/sentence-t5-base'],
type="value",
default='pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
label="Select any SBERT model for TextRank from the list below"),
gr.inputs.Dropdown(choices=['sentence-transformers/paraphrase-mpnet-base-v2',
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/paraphrase-distilroberta-base-v1',
'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
'sentence-transformers/paraphrase-albert-small-v2',
'sentence-transformers/paraphrase-albert-base-v2',
'sentence-transformers/paraphrase-MiniLM-L12-v2',
'sentence-transformers/paraphrase-MiniLM-L6-v2',
'sentence-transformers/all-MiniLM-L12-v2',
'sentence-transformers/all-distilroberta-v1',
'sentence-transformers/paraphrase-TinyBERT-L6-v2',
'sentence-transformers/paraphrase-MiniLM-L3-v2',
'sentence-transformers/all-MiniLM-L6-v2'],
type="value",
default='sentence-transformers/all-mpnet-base-v1',
label="Select any SBERT model for keyphrases from the list below"),
gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")
gr.inputs.Dropdown(choices=['cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token'],
type="value",
default='cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
label="Select any SapBERT model for clustering from the list below")],
outputs=gr.outputs.Dataframe(type="auto", label="Retrieved Results from PubMed",max_cols=None, overflow_row_behaviour="paginate"),
theme="dark-peach",
title="PubMed Abstract Retriever", description="Retrieves relevant PubMed abstracts for an online article which can be used as further references.",
article= "This work is based on the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
"\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
"\t The application then uses a UMLS based BERT model, <a href=https://arxiv.org/abs/2010.11784>SapBERT</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top 10 titles and abstracts are retrieved from PubMed database and displayed according to relevancy. The SapBERT models can be changed as per the list provided. "
"\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
"\t The default model names are provided which can be changed from the list of pretrained models. "
"\t The value of keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.")
igen_pubmed.launch(share=True,server_name='0.0.0.0',show_error=True)