Spaces:
Runtime error
Runtime error
pritamdeka
commited on
Commit
Β·
1f561dd
1
Parent(s):
7a12c31
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
word_embedding_model = models.Transformer('cambridgeltl/SapBERT-from-PubMedBERT-fulltext')
|
2 |
+
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
|
3 |
+
pooling_mode_mean_tokens=True,
|
4 |
+
pooling_mode_cls_token=False,
|
5 |
+
pooling_mode_max_tokens=False)
|
6 |
+
|
7 |
+
embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
|
8 |
+
|
9 |
+
def search(query):
|
10 |
+
Entrez.email = '[email protected]'
|
11 |
+
handle = Entrez.esearch(db='pubmed',
|
12 |
+
sort='relevance',
|
13 |
+
retmax='5',
|
14 |
+
retmode='xml',
|
15 |
+
term=query)
|
16 |
+
results = Entrez.read(handle)
|
17 |
+
return results
|
18 |
+
|
19 |
+
def fetch_details(id_list):
|
20 |
+
ids = ','.join(id_list)
|
21 |
+
Entrez.email = '[email protected]'
|
22 |
+
|
23 |
+
handle_1 = Entrez.efetch(db='pubmed', retmode='xml', id=ids)
|
24 |
+
results_1 = Entrez.read(handle_1)
|
25 |
+
return results_1
|
26 |
+
|
27 |
+
|
28 |
+
def remove_stopwords(sen):
|
29 |
+
sen_new = " ".join([i for i in sen if i not in stop_words])
|
30 |
+
return sen_new
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
def keyphrase_generator(article_link, model_1, model_2, max_num_keywords):
|
35 |
+
element=[]
|
36 |
+
final_textrank_list=[]
|
37 |
+
document=[]
|
38 |
+
text_doc=[]
|
39 |
+
final_list=[]
|
40 |
+
score_list=[]
|
41 |
+
sum_list=[]
|
42 |
+
model_1 = SentenceTransformer(model_1)
|
43 |
+
model_2 = SentenceTransformer(model_2)
|
44 |
+
url = article_link
|
45 |
+
if (url == False):
|
46 |
+
print("error")
|
47 |
+
html = requests.get(url).text
|
48 |
+
article = fulltext(html)
|
49 |
+
corpus=sent_tokenize(article)
|
50 |
+
indicator_list=['concluded','concludes','in a study', 'concluding','conclude','in sum','in a recent study','therefore','thus','so','hence',
|
51 |
+
'as a result','accordingly','consequently','in short','proves that','shows that','suggests that','demonstrates that','found that','observed that',
|
52 |
+
'indicated that','suggested that','demonstrated that']
|
53 |
+
count_dict={}
|
54 |
+
for l in corpus:
|
55 |
+
c=0
|
56 |
+
for l2 in indicator_list:
|
57 |
+
if l.find(l2)!=-1:#then it is a substring
|
58 |
+
c=1
|
59 |
+
break
|
60 |
+
if c:#
|
61 |
+
count_dict[l]=1
|
62 |
+
else:
|
63 |
+
count_dict[l]=0
|
64 |
+
for sent, score in count_dict.items():
|
65 |
+
score_list.append(score)
|
66 |
+
clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ").tolist()
|
67 |
+
corpus_embeddings = model_1.encode(clean_sentences_new)
|
68 |
+
sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
|
69 |
+
for i in range(len(clean_sentences_new)):
|
70 |
+
len_embeddings=(len(corpus_embeddings[i]))
|
71 |
+
for j in range(len(clean_sentences_new)):
|
72 |
+
if i != j:
|
73 |
+
if(len_embeddings == 1024):
|
74 |
+
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,1024), corpus_embeddings[j].reshape(1,1024))[0,0]
|
75 |
+
elif(len_embeddings == 768):
|
76 |
+
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,768), corpus_embeddings[j].reshape(1,768))[0,0]
|
77 |
+
nx_graph = nx.from_numpy_array(sim_mat)
|
78 |
+
scores = nx.pagerank(nx_graph)
|
79 |
+
sentences=((scores[i],s) for i,s in enumerate(corpus))
|
80 |
+
for elem in sentences:
|
81 |
+
element.append(elem[0])
|
82 |
+
for sc, lst in zip(score_list, element): ########## taking the scores from both the lists
|
83 |
+
sum1=sc+lst
|
84 |
+
sum_list.append(sum1)
|
85 |
+
x=sorted(((sum_list[i],s) for i,s in enumerate(corpus)), reverse=True)
|
86 |
+
for elem in x:
|
87 |
+
final_textrank_list.append(elem[1])
|
88 |
+
|
89 |
+
a=int((10*len(final_textrank_list))/100.0)
|
90 |
+
if(a<5):
|
91 |
+
total=5
|
92 |
+
else:
|
93 |
+
total=int(a)
|
94 |
+
for i in range(total):
|
95 |
+
document.append(final_textrank_list[i])
|
96 |
+
doc=" ".join(document)
|
97 |
+
for i in document:
|
98 |
+
doc_1=nlp(i)
|
99 |
+
text_doc.append([X.text for X in doc_1.ents])
|
100 |
+
entity_list = [item for sublist in text_doc for item in sublist]
|
101 |
+
entity_list = [word for word in entity_list if not word in all_stopwords]
|
102 |
+
entity_list = [word_entity for word_entity in entity_list if(p.singular_noun(word_entity) == False)]
|
103 |
+
entity_list=list(dict.fromkeys(entity_list))
|
104 |
+
doc_embedding = model_2.encode([doc])
|
105 |
+
candidates=entity_list
|
106 |
+
candidate_embeddings = model_2.encode(candidates)
|
107 |
+
distances = cosine_similarity(doc_embedding, candidate_embeddings)
|
108 |
+
top_n = max_num_keywords
|
109 |
+
keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]]
|
110 |
+
keywords = '\n'.join(keyword_list)
|
111 |
+
|
112 |
+
c_len=(len(keyword_list))
|
113 |
+
keyword_embeddings = embedder.encode(keyword_list)
|
114 |
+
data_embeddings = embedder.encode(keyword_list)
|
115 |
+
|
116 |
+
for num_clusters in range(1, top_n):
|
117 |
+
clustering_model = KMeans(n_clusters=num_clusters)
|
118 |
+
clustering_model.fit(keyword_embeddings)
|
119 |
+
cluster_assignment = clustering_model.labels_
|
120 |
+
clustered_sentences = [[] for i in range(num_clusters)]
|
121 |
+
for sentence_id, cluster_id in enumerate(cluster_assignment):
|
122 |
+
clustered_sentences[cluster_id].append(keyword_list[sentence_id])
|
123 |
+
cl_sent_len=(len(clustered_sentences))
|
124 |
+
list_cluster=list(clustered_sentences)
|
125 |
+
a=len(list_cluster)
|
126 |
+
cluster_list_final.append(list_cluster)
|
127 |
+
if (c_len==cl_sent_len and c_len>=3) or cl_sent_len==1:
|
128 |
+
silhouette_avg = 0
|
129 |
+
silhouette_score_list.append(silhouette_avg)
|
130 |
+
elif c_len==cl_sent_len==2:
|
131 |
+
silhouette_avg = 1
|
132 |
+
silhouette_score_list.append(silhouette_avg)
|
133 |
+
else:
|
134 |
+
silhouette_avg = silhouette_score(keyword_embeddings, cluster_assignment)
|
135 |
+
silhouette_score_list.append(silhouette_avg)
|
136 |
+
res_dict = dict(zip(silhouette_score_list, cluster_list_final))
|
137 |
+
cluster_items=res_dict[max(res_dict)]
|
138 |
+
|
139 |
+
for i in cluster_items:
|
140 |
+
z=' OR '.join(i)
|
141 |
+
comb.append("("+z+")")
|
142 |
+
comb_list.append(comb)
|
143 |
+
combinations = []
|
144 |
+
for subset in itertools.combinations(comb, 2):
|
145 |
+
combinations.append(subset)
|
146 |
+
f1_list=[]
|
147 |
+
for s in combinations:
|
148 |
+
final = ' AND '.join(s)
|
149 |
+
f1_list.append("("+final+")")
|
150 |
+
f_1=' OR '.join(f1_list)
|
151 |
+
final_list.append(f_1)
|
152 |
+
|
153 |
+
|
154 |
+
#if __name__ == '__main__':
|
155 |
+
#for qu in range(len(final_list)):
|
156 |
+
results=search(f_1)
|
157 |
+
id_list = results['IdList']
|
158 |
+
#if(id_list != []):
|
159 |
+
papers = fetch_details(id_list)
|
160 |
+
abstract_list=[]
|
161 |
+
year_list=[]
|
162 |
+
journal_list=[]
|
163 |
+
title_list=[]
|
164 |
+
for i, paper in enumerate(papers['PubmedArticle']):
|
165 |
+
x=(json.dumps(papers['PubmedArticle'][i], indent=2))
|
166 |
+
t_list=[]
|
167 |
+
y = json.loads(x)
|
168 |
+
try:
|
169 |
+
value_1 = y['MedlineCitation']['Article']['Abstract']['AbstractText']
|
170 |
+
value = (y['MedlineCitation']['Article']['ArticleTitle'])
|
171 |
+
value_2 = (y['MedlineCitation']['Article']['Journal']['JournalIssue']['PubDate']['Year'])
|
172 |
+
value_journal = (y['MedlineCitation']['Article']['Journal']['Title'])
|
173 |
+
t_list.append(value)
|
174 |
+
title_list.append(t_list)
|
175 |
+
year_list.append(value_2)
|
176 |
+
abstract_list.append(value_1)
|
177 |
+
journal_list.append(value_journal)
|
178 |
+
except KeyError:
|
179 |
+
value_1 = []
|
180 |
+
title_list.append(t_list)
|
181 |
+
abstract_list.append(value_1)
|
182 |
+
year_list.append(value_2)
|
183 |
+
journal_list.append(value_journal)
|
184 |
+
mydict={'Title': title_list, 'Abstract':abstract_list, 'Journal Title': journal_list, 'Year': year_list}
|
185 |
+
df_new=pd.DataFrame(mydict)
|
186 |
+
#print(df_new)
|
187 |
+
#else:
|
188 |
+
# abstract_list=[]
|
189 |
+
# title_list=[]
|
190 |
+
# year_list=[]
|
191 |
+
# journal_list=[]
|
192 |
+
# a=["No result"]
|
193 |
+
# b=["No results"]
|
194 |
+
# abstract_list.append(a)
|
195 |
+
# title_list.append(b)
|
196 |
+
# mydict={'Title': title_list, 'Abstract':abstract_list, 'Journal Title': journal_list, 'Year': year_list}
|
197 |
+
# df_new=pd.DataFrame(mydict)
|
198 |
+
#print(df_new)
|
199 |
+
return title_list
|
200 |
+
|
201 |
+
gr.Interface(keyphrase_generator,
|
202 |
+
inputs=[gr.inputs.Textbox(lines=1, placeholder="Provide article web link here",default="", label="Article web link"),
|
203 |
+
gr.inputs.Dropdown(choices=['sentence-transformers/all-mpnet-base-v2',
|
204 |
+
'sentence-transformers/all-mpnet-base-v1',
|
205 |
+
'sentence-transformers/all-distilroberta-v1',
|
206 |
+
'sentence-transformers/gtr-t5-large',
|
207 |
+
'pritamdeka/S-Bluebert-snli-multinli-stsb',
|
208 |
+
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
|
209 |
+
'sentence-transformers/stsb-mpnet-base-v2',
|
210 |
+
'sentence-transformers/stsb-roberta-base-v2',
|
211 |
+
'sentence-transformers/stsb-distilroberta-base-v2',
|
212 |
+
'sentence-transformers/sentence-t5-large',
|
213 |
+
'sentence-transformers/sentence-t5-base'],
|
214 |
+
type="value",
|
215 |
+
default='sentence-transformers/all-mpnet-base-v1',
|
216 |
+
label="Select any SBERT model for TextRank from the list below"),
|
217 |
+
gr.inputs.Dropdown(choices=['sentence-transformers/paraphrase-mpnet-base-v2',
|
218 |
+
'sentence-transformers/all-mpnet-base-v1',
|
219 |
+
'sentence-transformers/paraphrase-distilroberta-base-v1',
|
220 |
+
'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
|
221 |
+
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
|
222 |
+
'sentence-transformers/paraphrase-albert-small-v2',
|
223 |
+
'sentence-transformers/paraphrase-albert-base-v2',
|
224 |
+
'sentence-transformers/paraphrase-MiniLM-L12-v2',
|
225 |
+
'sentence-transformers/paraphrase-MiniLM-L6-v2',
|
226 |
+
'sentence-transformers/all-MiniLM-L12-v2',
|
227 |
+
'sentence-transformers/all-distilroberta-v1',
|
228 |
+
'sentence-transformers/paraphrase-TinyBERT-L6-v2',
|
229 |
+
'sentence-transformers/paraphrase-MiniLM-L3-v2',
|
230 |
+
'sentence-transformers/all-MiniLM-L6-v2'],
|
231 |
+
type="value",
|
232 |
+
default='sentence-transformers/all-mpnet-base-v1',
|
233 |
+
label="Select any SBERT model for keyphrases from the list below"),
|
234 |
+
gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
|
235 |
+
outputs=gr.outputs.Textbox(type="auto", label="Stuff"),
|
236 |
+
theme="peach",
|
237 |
+
title="Scientific Article Keyphrase Generator", description="Generates the keyphrases from an article which best describes the article.",
|
238 |
+
article= "The work is based on a part of the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
|
239 |
+
"\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
|
240 |
+
"\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
|
241 |
+
"\t The default model names are provided which can be changed from the list of pretrained models. "
|
242 |
+
"\t The value of output keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.").launch(share=True,debug=True)
|