Spaces:
Runtime error
Runtime error
pritamdeka
commited on
Commit
Β·
5354eb3
1
Parent(s):
db3b8b4
Update app.py
Browse files
app.py
CHANGED
@@ -210,7 +210,7 @@ def keyphrase_generator(article_link, model_1, model_2, max_num_keywords, model_
|
|
210 |
search_id='&id='+all_search_ids
|
211 |
ret_type='&rettype=text'
|
212 |
ret_mode='&retmode=xml'
|
213 |
-
ret_max='&retmax=
|
214 |
ret_sort='&sort=relevance'
|
215 |
return_url=ncbi_url+fetch_url+search_id+ret_type+ret_mode+ret_max+ret_sort
|
216 |
pubmed_abstract_request = requests.get(return_url)
|
@@ -271,12 +271,12 @@ igen_pubmed = gr.Interface(keyphrase_generator,
|
|
271 |
type="value",
|
272 |
default='cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
|
273 |
label="Select any SapBERT model for clustering from the list below")],
|
274 |
-
outputs=gr.outputs.Dataframe(type="auto", label="dataframe",
|
275 |
theme="peach",
|
276 |
title="Scientific Article Keyphrase Generator", description="Generates the keyphrases from an article which best describes the article.",
|
277 |
article= "The work is based the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
|
278 |
"\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
|
279 |
-
"\t The application then uses a <a href=https://arxiv.org/abs/2010.11784>UMLS based Bert model</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top
|
280 |
"\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
|
281 |
"\t The default model names are provided which can be changed from the list of pretrained models. "
|
282 |
"\t The value of keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.")
|
|
|
210 |
search_id='&id='+all_search_ids
|
211 |
ret_type='&rettype=text'
|
212 |
ret_mode='&retmode=xml'
|
213 |
+
ret_max='&retmax=10'
|
214 |
ret_sort='&sort=relevance'
|
215 |
return_url=ncbi_url+fetch_url+search_id+ret_type+ret_mode+ret_max+ret_sort
|
216 |
pubmed_abstract_request = requests.get(return_url)
|
|
|
271 |
type="value",
|
272 |
default='cambridgeltl/SapBERT-from-PubMedBERT-fulltext',
|
273 |
label="Select any SapBERT model for clustering from the list below")],
|
274 |
+
outputs=gr.outputs.Dataframe(type="auto", label="dataframe",max_cols=None, overflow_row_behaviour="paginate"),
|
275 |
theme="peach",
|
276 |
title="Scientific Article Keyphrase Generator", description="Generates the keyphrases from an article which best describes the article.",
|
277 |
article= "The work is based the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
|
278 |
"\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
|
279 |
+
"\t The application then uses a <a href=https://arxiv.org/abs/2010.11784>UMLS based Bert model</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top 10 titles and abstracts are retrieved from PubMed database and displayed according to relevancy. The UMLS Bert models can be chosen from the list provided. "
|
280 |
"\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
|
281 |
"\t The default model names are provided which can be changed from the list of pretrained models. "
|
282 |
"\t The value of keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.")
|