Spaces:
Runtime error
Runtime error
pritamdeka
commited on
Commit
Β·
a106d75
1
Parent(s):
46af800
Update app.py
Browse files
app.py
CHANGED
@@ -214,7 +214,7 @@ def keyphrase_generator(article_link, model_1, model_2, max_num_keywords):
|
|
214 |
search_id='&id='+all_search_ids
|
215 |
ret_type='&rettype=text'
|
216 |
ret_mode='&retmode=xml'
|
217 |
-
ret_max='&retmax=
|
218 |
ret_sort='&sort=relevance'
|
219 |
return_url=ncbi_url+fetch_url+search_id+ret_type+ret_mode+ret_max+ret_sort
|
220 |
pubmed_abstract_request = requests.get(return_url)
|
@@ -270,12 +270,12 @@ igen_pubmed = gr.Interface(keyphrase_generator,
|
|
270 |
default='sentence-transformers/all-mpnet-base-v1',
|
271 |
label="Select any SBERT model for keyphrases from the list below"),
|
272 |
gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
|
273 |
-
outputs=gr.outputs.Dataframe(type="auto", label="dataframe",max_cols=None,
|
274 |
theme="dark-peach",
|
275 |
title="PubMed Abstract Retriever", description="Retrieves relevant PubMed abstracts for an online article which can be used as further references.",
|
276 |
article= "This work is based on the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
|
277 |
"\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
|
278 |
-
"\t The application then uses a UMLS based BERT model, <a href=https://arxiv.org/abs/2010.11784>SapBERT</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top
|
279 |
"\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
|
280 |
"\t The default model names are provided which can be changed from the list of pretrained models. "
|
281 |
"\t The value of keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.")
|
|
|
214 |
search_id='&id='+all_search_ids
|
215 |
ret_type='&rettype=text'
|
216 |
ret_mode='&retmode=xml'
|
217 |
+
ret_max='&retmax=10'
|
218 |
ret_sort='&sort=relevance'
|
219 |
return_url=ncbi_url+fetch_url+search_id+ret_type+ret_mode+ret_max+ret_sort
|
220 |
pubmed_abstract_request = requests.get(return_url)
|
|
|
270 |
default='sentence-transformers/all-mpnet-base-v1',
|
271 |
label="Select any SBERT model for keyphrases from the list below"),
|
272 |
gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
|
273 |
+
outputs=gr.outputs.Dataframe(type="auto", label="dataframe",max_cols=None, overflow_row_behaviour="paginate"),
|
274 |
theme="dark-peach",
|
275 |
title="PubMed Abstract Retriever", description="Retrieves relevant PubMed abstracts for an online article which can be used as further references.",
|
276 |
article= "This work is based on the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
|
277 |
"\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
|
278 |
+
"\t The application then uses a UMLS based BERT model, <a href=https://arxiv.org/abs/2010.11784>SapBERT</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top 10 titles and abstracts are retrieved from PubMed database and displayed according to relevancy. "
|
279 |
"\t The list of SBERT models required in the textboxes can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
|
280 |
"\t The default model names are provided which can be changed from the list of pretrained models. "
|
281 |
"\t The value of keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.")
|