pritamdeka commited on
Commit
de0b032
Β·
1 Parent(s): f03dd15

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -271,8 +271,8 @@ igen_pubmed = gr.Interface(keyphrase_generator,
271
  label="Select any SBERT model for keyphrases from the list below"),
272
  gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
273
  outputs=gr.outputs.Dataframe(type="auto", label="dataframe",max_cols=None, max_rows=10, overflow_row_behaviour="paginate"),
274
- theme="peach",
275
- title="Scientific Article Keyphrase Generator", description="Generates the keyphrases from an article which best describes the article.",
276
  article= "The work is based the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
277
  "\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
278
  "\t The application then uses a <a href=https://arxiv.org/abs/2010.11784>UMLS based Bert model</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top 20 titles and abstracts are retrieved from PubMed database and displayed according to relevancy. "
 
271
  label="Select any SBERT model for keyphrases from the list below"),
272
  gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
273
  outputs=gr.outputs.Dataframe(type="auto", label="dataframe",max_cols=None, max_rows=10, overflow_row_behaviour="paginate"),
274
+ theme="dark-peach",
275
+ title="PubMed Abstract Retriever", description="Generates the keyphrases from an article which best describes the article.",
276
  article= "The work is based the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
277
  "\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
278
  "\t The application then uses a <a href=https://arxiv.org/abs/2010.11784>UMLS based Bert model</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top 20 titles and abstracts are retrieved from PubMed database and displayed according to relevancy. "