Spaces:
Runtime error
Runtime error
pritamdeka
commited on
Commit
Β·
de0b032
1
Parent(s):
f03dd15
Update app.py
Browse files
app.py
CHANGED
@@ -271,8 +271,8 @@ igen_pubmed = gr.Interface(keyphrase_generator,
|
|
271 |
label="Select any SBERT model for keyphrases from the list below"),
|
272 |
gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
|
273 |
outputs=gr.outputs.Dataframe(type="auto", label="dataframe",max_cols=None, max_rows=10, overflow_row_behaviour="paginate"),
|
274 |
-
theme="peach",
|
275 |
-
title="
|
276 |
article= "The work is based the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
|
277 |
"\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
|
278 |
"\t The application then uses a <a href=https://arxiv.org/abs/2010.11784>UMLS based Bert model</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top 20 titles and abstracts are retrieved from PubMed database and displayed according to relevancy. "
|
|
|
271 |
label="Select any SBERT model for keyphrases from the list below"),
|
272 |
gr.inputs.Slider(minimum=5, maximum=30, step=1, default=10, label="Max Keywords")],
|
273 |
outputs=gr.outputs.Dataframe(type="auto", label="dataframe",max_cols=None, max_rows=10, overflow_row_behaviour="paginate"),
|
274 |
+
theme="dark-peach",
|
275 |
+
title="PubMed Abstract Retriever", description="Generates the keyphrases from an article which best describes the article.",
|
276 |
article= "The work is based the paper <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>provided here</a>."
|
277 |
"\t It uses the TextRank algorithm with SBERT to first find the top sentences and then extracts the keyphrases from those sentences using scispaCy and SBERT."
|
278 |
"\t The application then uses a <a href=https://arxiv.org/abs/2010.11784>UMLS based Bert model</a> to cluster the keyphrases using K-means clustering method and finally create a boolean query. After that the top 20 titles and abstracts are retrieved from PubMed database and displayed according to relevancy. "
|