pritamdeka commited on
Commit
e736e68
Β·
1 Parent(s): 0bd51ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -254,12 +254,12 @@ def keyphrase_generator(article_link, model_1, model_2, max_num_keywords, model_
254
  df_new=pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in sorted_dict.items() ]))
255
 
256
  df_final = df_new.fillna(' ')
257
- fp = df_final.to_csv(r'C:\Users\Title_Abstract.csv', index = False, header=True)
258
 
259
  ############################################# Ends here ####################################################
260
 
261
  #return df_final
262
- return fp
263
 
264
 
265
  igen_pubmed = gr.Interface(keyphrase_generator,
@@ -308,9 +308,9 @@ igen_pubmed = gr.Interface(keyphrase_generator,
308
  default='pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
309
  label="Select any SBERT model for abstracts from the list below")],
310
  #outputs=gr.outputs.Dataframe(type="auto", label="Retrieved Results from PubMed",max_cols=2, overflow_row_behaviour="paginate"),
311
- outputs=gr.outputs.File(label="Output File"),
312
  theme="peach", layout="horizontal",
313
- title="PubMed Abstract Retriever", description="Retrieves relevant PubMed abstracts for an online article which can be used as further references. Please note that it may take sometime for the models to load. Examples are provided below for demo purposes. Choose any one example to see the results. The models can be changed to see different results. ",
314
  examples=[
315
  ["https://www.cancer.news/2021-12-22-mrna-vaccines-weaken-immune-system-cause-cancer.html",
316
  'sentence-transformers/all-mpnet-base-v1',
 
254
  df_new=pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in sorted_dict.items() ]))
255
 
256
  df_final = df_new.fillna(' ')
257
+
258
 
259
  ############################################# Ends here ####################################################
260
 
261
  #return df_final
262
+ return sorted_dict
263
 
264
 
265
  igen_pubmed = gr.Interface(keyphrase_generator,
 
308
  default='pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
309
  label="Select any SBERT model for abstracts from the list below")],
310
  #outputs=gr.outputs.Dataframe(type="auto", label="Retrieved Results from PubMed",max_cols=2, overflow_row_behaviour="paginate"),
311
+ outputs=gr.outputs.JSON(label=None),
312
  theme="peach", layout="horizontal",
313
+ title="PubMed Abstract Retriever", description="Retrieves relevant PubMed abstracts for an online article which can be used as further references. The output is in the form of JSON with <b><i>Titles</i></b> and <b><i>Abstracts</i></b>. Please note that it may take sometime for the models to load. Examples are provided below for demo purposes. Choose any one example to see the results. The models can be changed to see different results. ",
314
  examples=[
315
  ["https://www.cancer.news/2021-12-22-mrna-vaccines-weaken-immune-system-cause-cancer.html",
316
  'sentence-transformers/all-mpnet-base-v1',