Spaces:
Sleeping
Sleeping
chat with pdf app
Browse files
app.py
CHANGED
@@ -1,79 +1,79 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import os
|
3 |
-
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA
|
4 |
-
from langchain_community.document_loaders import PyPDFLoader
|
5 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain.chains.combine_documents import create_stuff_documents_chain
|
7 |
-
from langchain_core.prompts import ChatPromptTemplate
|
8 |
-
from langchain.chains import create_retrieval_chain
|
9 |
-
from langchain_community.vectorstores import FAISS
|
10 |
-
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
import tempfile
|
13 |
-
import time
|
14 |
-
|
15 |
-
load_dotenv()
|
16 |
-
|
17 |
-
# load the Nvidia API key
|
18 |
-
os.environ['NVIDIA_API_KEY'] = os.getenv('NVIDIA_API_KEY')
|
19 |
-
|
20 |
-
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
|
21 |
-
|
22 |
-
def vector_embedding(pdf_file):
|
23 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
|
24 |
-
tmp_file.write(pdf_file.getvalue())
|
25 |
-
tmp_file_path = tmp_file.name
|
26 |
-
|
27 |
-
st.session_state.embeddings = NVIDIAEmbeddings()
|
28 |
-
st.session_state.loader = PyPDFLoader(tmp_file_path)
|
29 |
-
st.session_state.docs = st.session_state.loader.load()
|
30 |
-
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=50)
|
31 |
-
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs)
|
32 |
-
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings)
|
33 |
-
|
34 |
-
os.unlink(tmp_file_path)
|
35 |
-
|
36 |
-
st.title("
|
37 |
-
|
38 |
-
prompt = ChatPromptTemplate.from_template(
|
39 |
-
"""
|
40 |
-
Answer the questions based on the provided context only.
|
41 |
-
Please provide the most accurate response based on the question
|
42 |
-
<context>
|
43 |
-
{context}
|
44 |
-
</context>
|
45 |
-
Question: {input}
|
46 |
-
"""
|
47 |
-
)
|
48 |
-
|
49 |
-
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
50 |
-
|
51 |
-
if uploaded_file is not None:
|
52 |
-
if st.button("Process PDF"):
|
53 |
-
with st.spinner("Processing PDF..."):
|
54 |
-
vector_embedding(uploaded_file)
|
55 |
-
st.success("FAISS Vector Store DB is ready using NvidiaEmbedding")
|
56 |
-
|
57 |
-
prompt1 = st.text_input("Enter your question about the uploaded document")
|
58 |
-
|
59 |
-
if prompt1 and 'vectors' in st.session_state:
|
60 |
-
document_chain = create_stuff_documents_chain(llm, prompt)
|
61 |
-
retriever = st.session_state.vectors.as_retriever()
|
62 |
-
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
63 |
-
|
64 |
-
with st.spinner("Generating answer..."):
|
65 |
-
start = time.process_time()
|
66 |
-
response = retrieval_chain.invoke({'input': prompt1})
|
67 |
-
end = time.process_time()
|
68 |
-
|
69 |
-
st.write("Answer:", response['answer'])
|
70 |
-
st.write(f"Response time: {end - start:.2f} seconds")
|
71 |
-
|
72 |
-
with st.expander("Document Similarity Search"):
|
73 |
-
for i, doc in enumerate(response["context"]):
|
74 |
-
st.write(f"Chunk {i + 1}:")
|
75 |
-
st.write(doc.page_content)
|
76 |
-
st.write("------------------------------------------")
|
77 |
-
else:
|
78 |
-
if prompt1:
|
79 |
st.warning("Please upload and process a PDF document first.")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings, ChatNVIDIA
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
7 |
+
from langchain_core.prompts import ChatPromptTemplate
|
8 |
+
from langchain.chains import create_retrieval_chain
|
9 |
+
from langchain_community.vectorstores import FAISS
|
10 |
+
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import tempfile
|
13 |
+
import time
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# load the Nvidia API key
|
18 |
+
os.environ['NVIDIA_API_KEY'] = os.getenv('NVIDIA_API_KEY')
|
19 |
+
|
20 |
+
llm = ChatNVIDIA(model="meta/llama3-70b-instruct")
|
21 |
+
|
22 |
+
def vector_embedding(pdf_file):
|
23 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
|
24 |
+
tmp_file.write(pdf_file.getvalue())
|
25 |
+
tmp_file_path = tmp_file.name
|
26 |
+
|
27 |
+
st.session_state.embeddings = NVIDIAEmbeddings()
|
28 |
+
st.session_state.loader = PyPDFLoader(tmp_file_path)
|
29 |
+
st.session_state.docs = st.session_state.loader.load()
|
30 |
+
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=50)
|
31 |
+
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs)
|
32 |
+
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings)
|
33 |
+
|
34 |
+
os.unlink(tmp_file_path)
|
35 |
+
|
36 |
+
st.title("Chat with PDF")
|
37 |
+
|
38 |
+
prompt = ChatPromptTemplate.from_template(
|
39 |
+
"""
|
40 |
+
Answer the questions based on the provided context only.
|
41 |
+
Please provide the most accurate response based on the question
|
42 |
+
<context>
|
43 |
+
{context}
|
44 |
+
</context>
|
45 |
+
Question: {input}
|
46 |
+
"""
|
47 |
+
)
|
48 |
+
|
49 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
50 |
+
|
51 |
+
if uploaded_file is not None:
|
52 |
+
if st.button("Process PDF"):
|
53 |
+
with st.spinner("Processing PDF..."):
|
54 |
+
vector_embedding(uploaded_file)
|
55 |
+
st.success("FAISS Vector Store DB is ready using NvidiaEmbedding")
|
56 |
+
|
57 |
+
prompt1 = st.text_input("Enter your question about the uploaded document")
|
58 |
+
|
59 |
+
if prompt1 and 'vectors' in st.session_state:
|
60 |
+
document_chain = create_stuff_documents_chain(llm, prompt)
|
61 |
+
retriever = st.session_state.vectors.as_retriever()
|
62 |
+
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
63 |
+
|
64 |
+
with st.spinner("Generating answer..."):
|
65 |
+
start = time.process_time()
|
66 |
+
response = retrieval_chain.invoke({'input': prompt1})
|
67 |
+
end = time.process_time()
|
68 |
+
|
69 |
+
st.write("Answer:", response['answer'])
|
70 |
+
st.write(f"Response time: {end - start:.2f} seconds")
|
71 |
+
|
72 |
+
with st.expander("Document Similarity Search"):
|
73 |
+
for i, doc in enumerate(response["context"]):
|
74 |
+
st.write(f"Chunk {i + 1}:")
|
75 |
+
st.write(doc.page_content)
|
76 |
+
st.write("------------------------------------------")
|
77 |
+
else:
|
78 |
+
if prompt1:
|
79 |
st.warning("Please upload and process a PDF document first.")
|