Spaces:
Sleeping
Sleeping
# Import required libraries | |
import pandas as pd | |
import dash | |
import dash_html_components as html | |
import dash_core_components as dcc | |
from dash.dependencies import Input, Output, State | |
import plotly.graph_objects as go | |
import plotly.express as px | |
from dash import no_update | |
# Read the airline data into pandas dataframe | |
spacex_df = pd.read_csv("spacex_launch_dash.csv") | |
max_payload = spacex_df['Payload Mass (kg)'].max() | |
min_payload = spacex_df['Payload Mass (kg)'].min() | |
# Create a dash application | |
app = dash.Dash(__name__) | |
# Create an app layout | |
launch_sites = [] | |
launch_sites.append({'label': 'All Sites', 'value': 'All Sites'}) | |
for item in spacex_df["Launch Site"].value_counts().index: | |
launch_sites.append({'label': item, 'value': item}) | |
app.layout = html.Div(children=[html.H1('SpaceX Launch Records Dashboard', | |
style={'textAlign': 'center', 'color': '#503D36', | |
'font-size': 40}), | |
# TASK 1: Add a dropdown list to enable Launch Site selection | |
# The default select value is for ALL sites | |
dcc.Dropdown(id='site-dropdown', options = launch_sites, value = 'All Sites', placeholder = "Select a Launch Site here", searchable = True), | |
html.Br(), | |
# TASK 2: Add a pie chart to show the total successful launches count for all sites | |
# If a specific launch site was selected, show the Success vs. Failed counts for the site | |
html.Div(dcc.Graph(id='success-pie-chart')), | |
html.Br(), | |
html.P("Payload range (Kg):"), | |
# TASK 3: Add a slider to select payload range | |
dcc.RangeSlider(id='payload-slider', min = 0, max = 10000, step = 1000, value = [min_payload, max_payload], marks={ 2500: {'label': '2500 (Kg)'}, 5000: {'label': '5000 (Kg)'}, 7500: {'label': '7500 (Kg)'}}), | |
# TASK 4: Add a scatter chart to show the correlation between payload and launch success | |
html.Div(dcc.Graph(id='success-payload-scatter-chart')), | |
]) | |
# TASK 2: | |
# Add a callback function for `site-dropdown` as input, `success-pie-chart` as output | |
# Add computation to callback function and return graph | |
def select(inputt): | |
if inputt == 'All Sites': | |
new_df = spacex_df.groupby(['Launch Site'])["class"].sum().to_frame() | |
new_df = new_df.reset_index() | |
fig = px.pie(new_df, values='class', names='Launch Site', title='Total Success Launches by Site') | |
else: | |
new_df = spacex_df[spacex_df["Launch Site"] == inputt]["class"].value_counts().to_frame() | |
new_df["name"] = ["Failure", "Success"] | |
fig = px.pie(new_df, values='class', names='name', title='Total Success Launches for ' + inputt) | |
return fig | |
# TASK 4: | |
# Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output | |
def scatter(input1, input2): | |
print(input1) | |
print(input2) | |
if input1 == 'All Sites': | |
new_df = spacex_df | |
new_df2 = new_df[new_df["Payload Mass (kg)"] >= input2[0]] | |
new_df3 = new_df2[new_df["Payload Mass (kg)"] <= input2[1]] | |
fig2 = px.scatter(new_df3, y="class", x="Payload Mass (kg)", color="Booster Version Category") | |
else: | |
new_df = spacex_df[spacex_df["Launch Site"] == input1] | |
new_df2 = new_df[new_df["Payload Mass (kg)"] >= input2[0]] | |
new_df3 = new_df2[new_df["Payload Mass (kg)"] <= input2[1]] | |
#new_df2 = new_df[new_df["Payload Mass (kg)"] >= input2[0] & new_df["Payload Mass (kg)"] <= input2[1]] | |
fig2 = px.scatter(new_df3, y="class", x="Payload Mass (kg)", color="Booster Version Category") | |
return fig2 | |
# Run the app | |
if __name__ == '__main__': | |
app.run_server() | |