Spaces:
Sleeping
Sleeping
from PyPDF2 import PdfReader | |
from openai import AzureOpenAI | |
import gradio as gr | |
import os | |
class IncorrectSentenceFinder: | |
""" | |
This class finds and displays grammatically incorrect sentences in a PDF document using OpenAI's GPT-3. | |
Args: | |
pdf_file (str): The path to the PDF file. | |
""" | |
def __init__(self): | |
""" | |
Initialize the IncorrectSentenceFinder with the OpenAI API key. | |
""" | |
# openai.api_type = os.getenv['api_type'] | |
# openai.api_base = os.getenv['api_base'] | |
# openai.api_version = os.getenv['api_version'] | |
# openai.api_key = os.getenv['api_key'] | |
pass | |
def _find_incorrect_sentence(self, text: str) -> str: | |
""" | |
Use OpenAI's GPT-3 to identify grammatically incorrect sentences in the given text. | |
Args: | |
text (str): Text to check for grammatical errors. | |
Returns: | |
str: Grammatically incorrect sentences identified by GPT-3. | |
""" | |
# Create a request to OpenAI's GPT-3 engine to identify grammatically incorrect sentences. | |
client = AzureOpenAI(api_key=os.getenv("AZURE_OPENAI_KEY"), | |
api_version="2023-07-01-preview", | |
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT") | |
) | |
conversation = [ | |
{"role": "system", "content": "You are a helpful Error sentence finder."}, | |
{"role": "user", "content": f"""list out the grammatical error sentence in the given text:\n{text} | |
format: | |
error sentence:finded error sentence | |
"""} | |
] | |
# Call OpenAI GPT-3.5-turbo | |
chat_completion = client.chat.completions.create( | |
model = "GPT-3", | |
messages = conversation, | |
max_tokens=1000, | |
temperature=0 | |
) | |
response = chat_completion.choices[0].message.content | |
return response | |
def get_incorrect_sentence(self, pdf_file: str) -> str: | |
""" | |
Extract text from the PDF document and find grammatically incorrect sentences. | |
Returns: | |
str: Grammatically incorrect sentences identified by GPT-3. | |
""" | |
try: | |
# Open the PDF file using PyMuPDF's fitz library | |
doc =PdfReader(pdf_file.name) | |
incorrect_sentences = '' | |
# Iterate through each page in the PDF document and extract the text | |
for page_number in range(len(doc.pages)): | |
# Extract text from the page | |
page = doc.pages[page_number] | |
text = page.extract_text() | |
incorrect_sentences += self._find_incorrect_sentence(text) | |
return incorrect_sentences | |
except Exception as e: | |
print(f"An error occurred: {str(e)}") | |
def file_output_fnn(self,file_path): | |
file_path = file_path.name | |
return file_path | |
def gradio_interface(self): | |
with gr.Blocks(css="style.css",theme='xiaobaiyuan/theme_brief') as demo: | |
with gr.Row(elem_id = "col-container",scale=0.80): | |
with gr.Column(elem_id = "col-container",scale=0.80): | |
file1 = gr.File(label="File",elem_classes="filenameshow") | |
with gr.Column(elem_id = "col-container",scale=0.20): | |
upload_button1 = gr.UploadButton( | |
"Browse File",file_types=[".txt", ".pdf", ".doc", ".docx",".json",".csv"], | |
elem_classes="uploadbutton") | |
incorrect_sentence = gr.Button("Get Headings",elem_classes="uploadbutton") | |
with gr.Row(elem_id = "col-container",scale=0.60): | |
headings = gr.Textbox(label = "Headings") | |
upload_button1.upload(self.file_output_fnn,upload_button1,file1) | |
incorrect_sentence.click(self.get_incorrect_sentence,upload_button1,headings) | |