Spaces:
Sleeping
Sleeping
naveenvenkatesh
commited on
Commit
·
4ec3e55
1
Parent(s):
417a9e0
Upload 5 files
Browse files- ContractGenerator.py +43 -0
- contract_missing_clausses.py +89 -0
- extract_date.py +90 -0
- invoice_extractor.py +341 -0
- pdftojson.py +33 -10
ContractGenerator.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
|
3 |
+
class ContractGenerator:
|
4 |
+
"""
|
5 |
+
A class for generating contract forms based on user instructions using the OpenAI GPT-3.5 model.
|
6 |
+
"""
|
7 |
+
|
8 |
+
def __init__(self, api_key: str):
|
9 |
+
"""
|
10 |
+
Initialize the ContractGenerator.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
api_key (str): Your OpenAI API key.
|
14 |
+
"""
|
15 |
+
openai.api_key = api_key
|
16 |
+
|
17 |
+
def generate_contract(self, instructions: str) -> None:
|
18 |
+
"""
|
19 |
+
Generate a contract form based on user instructions.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
instructions (str): User-provided instructions for the contract form.
|
23 |
+
|
24 |
+
Raises:
|
25 |
+
openai.error.OpenAIError: If there is an error with the OpenAI API request.
|
26 |
+
"""
|
27 |
+
# Define a prompt
|
28 |
+
prompt = f"Your task is to generate a contract form based on user instructions. ***Instructions:{instructions}***"
|
29 |
+
|
30 |
+
try:
|
31 |
+
# Generate text using the GPT-3.5 model
|
32 |
+
response = openai.Completion.create(
|
33 |
+
engine="text-davinci-003",
|
34 |
+
prompt=prompt,
|
35 |
+
max_tokens=500 # You can adjust the length of the generated text
|
36 |
+
)
|
37 |
+
|
38 |
+
# Print the generated text
|
39 |
+
return response.choices[0].text
|
40 |
+
|
41 |
+
except openai.error.OpenAIError as e:
|
42 |
+
print(f"Error generating the contract: {str(e)}")
|
43 |
+
|
contract_missing_clausses.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
import pdfplumber
|
3 |
+
import logging
|
4 |
+
|
5 |
+
# Configure logging
|
6 |
+
logging.basicConfig(
|
7 |
+
filename='contract_missing_clausses.log', # You can adjust the log file name here
|
8 |
+
filemode='a',
|
9 |
+
format='[%(asctime)s] [%(levelname)s] [%(filename)s] [%(lineno)s:%(funcName)s()] %(message)s',
|
10 |
+
datefmt='%Y-%b-%d %H:%M:%S'
|
11 |
+
)
|
12 |
+
LOGGER = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
log_level_env = 'INFO' # You can adjust the log level here
|
15 |
+
log_level_dict = {
|
16 |
+
'DEBUG': logging.DEBUG,
|
17 |
+
'INFO': logging.INFO,
|
18 |
+
'WARNING': logging.WARNING,
|
19 |
+
'ERROR': logging.ERROR,
|
20 |
+
'CRITICAL': logging.CRITICAL
|
21 |
+
}
|
22 |
+
if log_level_env in log_level_dict:
|
23 |
+
log_level = log_level_dict[log_level_env]
|
24 |
+
else:
|
25 |
+
log_level = log_level_dict['INFO']
|
26 |
+
LOGGER.setLevel(log_level)
|
27 |
+
|
28 |
+
class ContractMissingClauses:
|
29 |
+
|
30 |
+
"""
|
31 |
+
Class for identifying missing clauses, sub-clauses, and terms in a contract.
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(self,open_api_key):
|
35 |
+
|
36 |
+
"""
|
37 |
+
Initialize the ContractMissingClauses class and set up the OpenAI API client.
|
38 |
+
"""
|
39 |
+
|
40 |
+
# Initialize the OpenAI API client
|
41 |
+
openai.api_key = open_api_key
|
42 |
+
|
43 |
+
def get_missing_clauses(self, contract: str):
|
44 |
+
|
45 |
+
"""
|
46 |
+
Generate and print missing clauses, sub-clauses, and terms in the given contract.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
contract (str): The text of the contract.
|
50 |
+
"""
|
51 |
+
try:
|
52 |
+
LOGGER.info("Analyzing contract and extracting missing clauses...")
|
53 |
+
# Generate text using the OpenAI GPT-3 model
|
54 |
+
response = openai.Completion.create(
|
55 |
+
engine="text-davinci-003", # You can specify different engines
|
56 |
+
prompt="identify missing clauses,sub-clauses and terms from given contrct ***{contract}*** return only missing (clauses,sub-clauses and terms) seperately.",
|
57 |
+
temperature=0,
|
58 |
+
max_tokens=500, # The maximum number of tokens (words) in the generated text
|
59 |
+
)
|
60 |
+
|
61 |
+
# Print the generated text
|
62 |
+
return response.choices[0].text
|
63 |
+
|
64 |
+
except Exception as e:
|
65 |
+
# If an error occurs during the key-value extraction process, log the error
|
66 |
+
LOGGER.error(f"Error occurred while extracting missing clauses: {str(e)}")
|
67 |
+
|
68 |
+
|
69 |
+
def iterate_each_page(self,pdf_file):
|
70 |
+
|
71 |
+
"""
|
72 |
+
Iterate through each page of a PDF contract, extract text, and call get_missing_clauses for each page.
|
73 |
+
"""
|
74 |
+
|
75 |
+
try:
|
76 |
+
|
77 |
+
LOGGER.info("Analyzing contract and extracting pdf page...")
|
78 |
+
|
79 |
+
# Initialize pdfplumber
|
80 |
+
pdf = pdfplumber.open(pdf_file.name)
|
81 |
+
|
82 |
+
# Iterate through each page and extract text
|
83 |
+
for page in pdf.pages:
|
84 |
+
contract = page.extract_text()
|
85 |
+
self.get_missing_clauses(contract)
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
# If an error occurs during the key-value extraction process, log the error
|
89 |
+
LOGGER.error(f"Error occurred while extracting pdf page: {str(e)}")
|
extract_date.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PyPDF2 import PdfReader
|
2 |
+
import openai
|
3 |
+
import fitz # PyMuPDF
|
4 |
+
import logging
|
5 |
+
|
6 |
+
# Configure logging
|
7 |
+
logging.basicConfig(
|
8 |
+
filename='extract_date.log', # You can adjust the log file name here
|
9 |
+
filemode='a',
|
10 |
+
format='[%(asctime)s] [%(levelname)s] [%(filename)s] [%(lineno)s:%(funcName)s()] %(message)s',
|
11 |
+
datefmt='%Y-%b-%d %H:%M:%S'
|
12 |
+
)
|
13 |
+
LOGGER = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
log_level_env = 'INFO' # You can adjust the log level here
|
16 |
+
log_level_dict = {
|
17 |
+
'DEBUG': logging.DEBUG,
|
18 |
+
'INFO': logging.INFO,
|
19 |
+
'WARNING': logging.WARNING,
|
20 |
+
'ERROR': logging.ERROR,
|
21 |
+
'CRITICAL': logging.CRITICAL
|
22 |
+
}
|
23 |
+
if log_level_env in log_level_dict:
|
24 |
+
log_level = log_level_dict[log_level_env]
|
25 |
+
else:
|
26 |
+
log_level = log_level_dict['INFO']
|
27 |
+
LOGGER.setLevel(log_level)
|
28 |
+
|
29 |
+
class ExtractDateAndDuration:
|
30 |
+
|
31 |
+
|
32 |
+
def __init__(self,api_key):
|
33 |
+
"""
|
34 |
+
Initialize the ExtractDateAndDuration class.
|
35 |
+
"""
|
36 |
+
openai.api_key = api_key
|
37 |
+
|
38 |
+
def get_date_and_duration(self, contract_text: str) -> str:
|
39 |
+
"""
|
40 |
+
Extract dates and durations from the provided contract text.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
contract_text (str): The text of the contract to analyze.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
str: Extracted dates and durations.
|
47 |
+
"""
|
48 |
+
try:
|
49 |
+
response = openai.Completion.create(
|
50 |
+
engine="text-davinci-003",
|
51 |
+
prompt=f"""Your task is Identify Dates and Durations Mentioned in the contract and extract that date and duration in key-value pair.
|
52 |
+
```contract: {contract_text}```
|
53 |
+
""",
|
54 |
+
max_tokens=300,
|
55 |
+
temperature=0
|
56 |
+
)
|
57 |
+
extracted_date_duration = response.choices[0].text.strip()
|
58 |
+
return extracted_date_duration
|
59 |
+
|
60 |
+
except Exception as e:
|
61 |
+
LOGGER.error(f"An error occurred during text analysis: {str(e)}")
|
62 |
+
|
63 |
+
def itrate_each_page(self, pdf_file_path: str):
|
64 |
+
"""
|
65 |
+
Extract text from each page of a PDF document and process it.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
pdf_file_path (str): The path to the PDF document.
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
str: Extracted text from the PDF pages.
|
72 |
+
"""
|
73 |
+
try:
|
74 |
+
# Open the multi-page PDF using PdfReaderer
|
75 |
+
pdf = PdfReader(pdf_file_path.name)
|
76 |
+
|
77 |
+
extracted_date_duration = ""
|
78 |
+
|
79 |
+
# Extract text from each page and pass it to the process_text function
|
80 |
+
for page_number in range(len(pdf.pages)):
|
81 |
+
# Extract text from the page
|
82 |
+
page = pdf.pages[page_number]
|
83 |
+
text = page.extract_text()
|
84 |
+
|
85 |
+
# Pass the text to the process_text function for further processing
|
86 |
+
extracted_date_duration += self.get_date_and_duration(text)
|
87 |
+
return extracted_date_duration
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
LOGGER.error(f"An error occurred while processing the PDF document: {str(e)}")
|
invoice_extractor.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import traceback
|
5 |
+
import torch
|
6 |
+
from docquery import pipeline
|
7 |
+
from docquery.document import load_bytes, load_document, ImageDocument
|
8 |
+
from docquery.ocr_reader import get_ocr_reader
|
9 |
+
from pdf2image import convert_from_path
|
10 |
+
|
11 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
12 |
+
|
13 |
+
# Initialize the logger
|
14 |
+
logging.basicConfig(filename="invoice_extraction.log", level=logging.DEBUG) # Create a log file
|
15 |
+
|
16 |
+
# Checkpoint for different models
|
17 |
+
CHECKPOINTS = {
|
18 |
+
"LayoutLMv1 for Invoices 🧾": "impira/layoutlm-invoices",
|
19 |
+
}
|
20 |
+
PIPELINES = {}
|
21 |
+
|
22 |
+
|
23 |
+
class InvoiceKeyValuePair():
|
24 |
+
|
25 |
+
"""
|
26 |
+
This class provides a utility to extract key-value pairs from invoices using LayoutLM.
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(self):
|
30 |
+
|
31 |
+
self.fields = {
|
32 |
+
"Vendor Name": ["Vendor Name - Logo?", "Vendor Name - Address?"],
|
33 |
+
"Vendor Address": ["Vendor Address?"],
|
34 |
+
"Customer Name": ["Customer Name?"],
|
35 |
+
"Customer Address": ["Customer Address?"],
|
36 |
+
"Invoice Number": ["Invoice Number?"],
|
37 |
+
"Invoice Date": ["Invoice Date?"],
|
38 |
+
"Due Date": ["Due Date?"],
|
39 |
+
"Subtotal": ["Subtotal?"],
|
40 |
+
"Total Tax": ["Total Tax?"],
|
41 |
+
"Invoice Total": ["Invoice Total?"],
|
42 |
+
"Amount Due": ["Amount Due?"],
|
43 |
+
"Payment Terms": ["Payment Terms?"],
|
44 |
+
"Remit To Name": ["Remit To Name?"],
|
45 |
+
"Remit To Address": ["Remit To Address?"],
|
46 |
+
}
|
47 |
+
self.model = list(CHECKPOINTS.keys())[0]
|
48 |
+
|
49 |
+
def ensure_list(self, x):
|
50 |
+
try:
|
51 |
+
# Log the function entry
|
52 |
+
logging.info(f'Entering ensure_list with x={x}')
|
53 |
+
|
54 |
+
# Check if 'x' is already a list
|
55 |
+
if isinstance(x, list):
|
56 |
+
return x
|
57 |
+
else:
|
58 |
+
# If 'x' is not a list, wrap it in a list and return
|
59 |
+
return [x]
|
60 |
+
except Exception as e:
|
61 |
+
# Log exceptions
|
62 |
+
logging.error("An error occurred:", exc_info=True)
|
63 |
+
return []
|
64 |
+
|
65 |
+
def construct_pipeline(self, task, model):
|
66 |
+
try:
|
67 |
+
# Log the function entry
|
68 |
+
logging.info(f'Entering construct_pipeline with task={task} and model={model}')
|
69 |
+
|
70 |
+
# Global dictionary to cache pipelines based on model checkpoint names
|
71 |
+
global PIPELINES
|
72 |
+
|
73 |
+
# Check if a pipeline for the specified model already exists in the cache
|
74 |
+
if model in PIPELINES:
|
75 |
+
# If it exists, return the cached pipeline
|
76 |
+
return PIPELINES[model]
|
77 |
+
try:
|
78 |
+
# Determine the device to use for inference (GPU if available, else CPU)
|
79 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
80 |
+
|
81 |
+
# Create the pipeline using the specified task and model checkpoint
|
82 |
+
ret = pipeline(task=task, model=CHECKPOINTS[model], device=device)
|
83 |
+
|
84 |
+
# Cache the created pipeline for future use
|
85 |
+
PIPELINES[model] = ret
|
86 |
+
|
87 |
+
# Return the constructed pipeline
|
88 |
+
return ret
|
89 |
+
except Exception as e:
|
90 |
+
# Handle exceptions and log the error message
|
91 |
+
logging.error("An error occurred:", exc_info=True)
|
92 |
+
return None
|
93 |
+
except Exception as e:
|
94 |
+
# Log exceptions
|
95 |
+
logging.error("An error occurred:", exc_info=True)
|
96 |
+
return None
|
97 |
+
|
98 |
+
def run_pipeline(self, model, question, document, top_k):
|
99 |
+
try:
|
100 |
+
# Log the function entry
|
101 |
+
logging.info(f'Entering run_pipeline with model={model}, question={question}, and document={document}')
|
102 |
+
|
103 |
+
# Use the construct_pipeline method to get or create a pipeline for the specified model
|
104 |
+
pipeline = self.construct_pipeline("document-question-answering", model)
|
105 |
+
|
106 |
+
# Use the constructed pipeline to perform question-answering on the document
|
107 |
+
# Pass the question, document context, and top_k as arguments to the pipeline
|
108 |
+
return pipeline(question=question, **document.context, top_k=top_k)
|
109 |
+
except Exception as e:
|
110 |
+
# Log exceptions
|
111 |
+
logging.error("An error occurred:", exc_info=True)
|
112 |
+
return None
|
113 |
+
|
114 |
+
def lift_word_boxes(self, document, page):
|
115 |
+
try:
|
116 |
+
# Log the function entry
|
117 |
+
logging.info(f'Entering lift_word_boxes with document={document} and page={page}')
|
118 |
+
|
119 |
+
# Extract the word boxes for the specified page from the document's context
|
120 |
+
return document.context["image"][page][1]
|
121 |
+
except Exception as e:
|
122 |
+
# Log exceptions
|
123 |
+
logging.error("An error occurred:", exc_info=True)
|
124 |
+
return []
|
125 |
+
|
126 |
+
def expand_bbox(self, word_boxes):
|
127 |
+
try:
|
128 |
+
# Log the function entry
|
129 |
+
logging.info(f'Entering expand_bbox with word_boxes={word_boxes}')
|
130 |
+
|
131 |
+
# Check if the input list of word boxes is empty
|
132 |
+
if len(word_boxes) == 0:
|
133 |
+
return None
|
134 |
+
|
135 |
+
# Extract the minimum and maximum coordinates of the word boxes
|
136 |
+
min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes])
|
137 |
+
|
138 |
+
# Calculate the overall minimum and maximum coordinates
|
139 |
+
min_x, min_y, max_x, max_y = [min(min_x), min(min_y), max(max_x), max(max_y)]
|
140 |
+
|
141 |
+
# Return the expanded bounding box as [min_x, min_y, max_x, max_y]
|
142 |
+
return [min_x, min_y, max_x, max_y]
|
143 |
+
except Exception as e:
|
144 |
+
# Log exceptions
|
145 |
+
logging.error("An error occurred:", exc_info=True)
|
146 |
+
return None
|
147 |
+
|
148 |
+
def normalize_bbox(self, box, width, height, padding=0.005):
|
149 |
+
try:
|
150 |
+
# Log the function entry
|
151 |
+
logging.info(f'Entering normalize_bbox with box={box}, width={width}, height={height}, and padding={padding}')
|
152 |
+
|
153 |
+
# Extract the bounding box coordinates and convert them from millimeters to fractions
|
154 |
+
min_x, min_y, max_x, max_y = [c / 1000 for c in box]
|
155 |
+
|
156 |
+
# Apply padding if specified (as a fraction of image dimensions)
|
157 |
+
if padding != 0:
|
158 |
+
min_x = max(0, min_x - padding)
|
159 |
+
min_y = max(0, min_y - padding)
|
160 |
+
max_x = min(max_x + padding, 1)
|
161 |
+
max_y = min(max_y + padding, 1)
|
162 |
+
|
163 |
+
# Scale the normalized coordinates to match the image dimensions
|
164 |
+
return [min_x * width, min_y * height, max_x * width, max_y * height]
|
165 |
+
except Exception as e:
|
166 |
+
# Log exceptions
|
167 |
+
logging.error("An error occurred:", exc_info=True)
|
168 |
+
return None
|
169 |
+
|
170 |
+
def annotate_page(self, prediction, pages, document):
|
171 |
+
try:
|
172 |
+
# Log the function entry
|
173 |
+
logging.info(f'Entering annotate_page with prediction={prediction}, pages={pages}, and document={document}')
|
174 |
+
|
175 |
+
# Check if a prediction exists and contains word_ids
|
176 |
+
if prediction is not None and "word_ids" in prediction:
|
177 |
+
|
178 |
+
# Get the image of the page where the prediction was made
|
179 |
+
image = pages[prediction["page"]]
|
180 |
+
|
181 |
+
# Create a drawing object for the image
|
182 |
+
draw = ImageDraw.Draw(image, "RGBA")
|
183 |
+
|
184 |
+
# Extract word boxes for the page
|
185 |
+
word_boxes = self.lift_word_boxes(document, prediction["page"])
|
186 |
+
|
187 |
+
# Expand and normalize the bounding box of the predicted words
|
188 |
+
x1, y1, x2, y2 = self.normalize_bbox(
|
189 |
+
self.expand_bbox([word_boxes[i] for i in prediction["word_ids"]]),
|
190 |
+
image.width,
|
191 |
+
image.height,
|
192 |
+
)
|
193 |
+
|
194 |
+
# Draw a semi-transparent green rectangle around the predicted words
|
195 |
+
draw.rectangle(((x1, y1), (x2, y2)), fill=(0, 255, 0, int(0.4 * 255)))
|
196 |
+
except Exception as e:
|
197 |
+
# Log exceptions
|
198 |
+
logging.error("An error occurred:", exc_info=True)
|
199 |
+
|
200 |
+
def process_fields(self, document, fields, model=list(CHECKPOINTS.keys())[0]):
|
201 |
+
try:
|
202 |
+
# Log the function entry
|
203 |
+
logging.info(f'Entering process_fields with document={document}, fields={fields}, and model={model}')
|
204 |
+
|
205 |
+
# Convert preview pages of the document to RGB format
|
206 |
+
pages = [x.copy().convert("RGB") for x in document.preview]
|
207 |
+
|
208 |
+
# Initialize dictionaries to store results
|
209 |
+
ret = {}
|
210 |
+
table = []
|
211 |
+
|
212 |
+
# Iterate through the fields and associated questions
|
213 |
+
for (field_name, questions) in fields.items():
|
214 |
+
|
215 |
+
# Extract answers for each question and filter based on score
|
216 |
+
answers = [
|
217 |
+
a
|
218 |
+
for q in questions
|
219 |
+
for a in self.ensure_list(self.run_pipeline(model, q, document, top_k=1))
|
220 |
+
if a.get("score", 1) > 0.5
|
221 |
+
]
|
222 |
+
|
223 |
+
# Sort answers by score (higher score first)
|
224 |
+
answers.sort(key=lambda x: -x.get("score", 0) if x else 0)
|
225 |
+
|
226 |
+
# Get the top answer (if any)
|
227 |
+
top = answers[0] if len(answers) > 0 else None
|
228 |
+
|
229 |
+
# Annotate the page with the top answer's bounding box
|
230 |
+
self.annotate_page(top, pages, document)
|
231 |
+
|
232 |
+
# Store the top answer for the field and add it to the table
|
233 |
+
ret[field_name] = top
|
234 |
+
table.append([field_name, top.get("answer") if top is not None else None])
|
235 |
+
|
236 |
+
# Return the table of key-value pairs
|
237 |
+
return table
|
238 |
+
except Exception as e:
|
239 |
+
# Log exceptions
|
240 |
+
logging.error("An error occurred:", exc_info=True)
|
241 |
+
return []
|
242 |
+
|
243 |
+
def process_document(self, document, fields, model, error=None):
|
244 |
+
try:
|
245 |
+
# Log the function entry
|
246 |
+
logging.info(f'Entering process_document with document={document}, fields={fields}, model={model}, and error={error}')
|
247 |
+
|
248 |
+
# Check if the document is not None and no error occurred during processing
|
249 |
+
if document is not None and error is None:
|
250 |
+
|
251 |
+
# Process the fields in the document using the specified model
|
252 |
+
table = self.process_fields(document, fields, model)
|
253 |
+
return table
|
254 |
+
except Exception as e:
|
255 |
+
# Log exceptions
|
256 |
+
logging.error("An error occurred:", exc_info=True)
|
257 |
+
return []
|
258 |
+
|
259 |
+
def process_path(self, path, fields, model):
|
260 |
+
try:
|
261 |
+
# Log the function entry
|
262 |
+
logging.info(f'Entering process_path with path={path}, fields={fields}, and model={model}')
|
263 |
+
|
264 |
+
# Initialize error and document variables
|
265 |
+
error = None
|
266 |
+
document = None
|
267 |
+
|
268 |
+
# Check if a file path is provided
|
269 |
+
if path:
|
270 |
+
try:
|
271 |
+
# Load the document from the specified file path
|
272 |
+
document = load_document(path)
|
273 |
+
except Exception as e:
|
274 |
+
# Handle exceptions and store the error message
|
275 |
+
logging.error("An error occurred:", exc_info=True)
|
276 |
+
error = str(e)
|
277 |
+
|
278 |
+
# Process the loaded document and extract key-value pairs
|
279 |
+
return self.process_document(document, fields, model, error)
|
280 |
+
except Exception as e:
|
281 |
+
# Log exceptions
|
282 |
+
logging.error("An error occurred:", exc_info=True)
|
283 |
+
return []
|
284 |
+
|
285 |
+
def pdf_to_image(self, file_path):
|
286 |
+
try:
|
287 |
+
# Log the function entry
|
288 |
+
logging.info(f'Entering pdf_to_image with file_path={file_path}')
|
289 |
+
|
290 |
+
# Convert PDF to a list of image objects (one for each page)
|
291 |
+
images = convert_from_path(file_path)
|
292 |
+
|
293 |
+
# Loop through each image and save it
|
294 |
+
for i, image in enumerate(images):
|
295 |
+
image_path = f'page_{i + 1}.png'
|
296 |
+
|
297 |
+
return image_path
|
298 |
+
except Exception as e:
|
299 |
+
# Log exceptions
|
300 |
+
logging.error("An error occurred:", exc_info=True)
|
301 |
+
return []
|
302 |
+
|
303 |
+
def process_upload(self, file):
|
304 |
+
try:
|
305 |
+
# Log the function entry
|
306 |
+
logging.info(f'Entering process_upload with file={file}')
|
307 |
+
|
308 |
+
# Get the model and fields from the instance
|
309 |
+
model = self.model
|
310 |
+
fields = self.fields
|
311 |
+
|
312 |
+
# Convert the uploaded PDF file to a list of image files
|
313 |
+
image = self.pdf_to_image(file)
|
314 |
+
|
315 |
+
# Use the first generated image file as the file path for processing
|
316 |
+
file = image
|
317 |
+
|
318 |
+
# Process the document (image) and extract key-value pairs
|
319 |
+
return self.process_path(file if file else None, fields, model)
|
320 |
+
except Exception as e:
|
321 |
+
# Log exceptions
|
322 |
+
logging.error("An error occurred:", exc_info=True)
|
323 |
+
return []
|
324 |
+
|
325 |
+
def extract_key_value_pair(self, invoice_file):
|
326 |
+
try:
|
327 |
+
# Log the function entry
|
328 |
+
logging.info(f'Entering extract_key_value_pair with invoice_file={invoice_file}')
|
329 |
+
|
330 |
+
# Process the uploaded invoice PDF file and extract key-value pairs
|
331 |
+
data = self.process_upload(invoice_file.name)
|
332 |
+
|
333 |
+
# Iterate through the extracted key-value pairs and print them
|
334 |
+
for item in data:
|
335 |
+
key, value = item
|
336 |
+
return f'{key}: {value}'
|
337 |
+
|
338 |
+
except Exception as e:
|
339 |
+
# Log exceptions
|
340 |
+
logging.error("An error occurred:", exc_info=True)
|
341 |
+
|
pdftojson.py
CHANGED
@@ -1,16 +1,40 @@
|
|
1 |
import os
|
2 |
import PyPDF2
|
|
|
3 |
from langchain import PromptTemplate, LLMChain
|
4 |
from langchain.llms import OpenAI
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
class PdftoJson:
|
7 |
|
8 |
-
def __init__(self):
|
9 |
"""
|
10 |
Initialize the PdftoJson class with OpenAI API key.
|
11 |
"""
|
12 |
-
|
13 |
-
|
14 |
|
15 |
def _get_json(self, input_text: str) -> str:
|
16 |
"""
|
@@ -23,6 +47,7 @@ class PdftoJson:
|
|
23 |
str: JSON result containing topics and content.
|
24 |
"""
|
25 |
try:
|
|
|
26 |
|
27 |
# Initialize the OpenAI language model with specified settings
|
28 |
llm = OpenAI(temperature=0, max_tokens=1000)
|
@@ -42,10 +67,11 @@ class PdftoJson:
|
|
42 |
text = input_text
|
43 |
json_result = llm_chain.run(text)
|
44 |
|
|
|
45 |
return json_result
|
46 |
|
47 |
except Exception as e:
|
48 |
-
|
49 |
|
50 |
|
51 |
def extract_text_from_pdf(self, pdf_path: str):
|
@@ -56,6 +82,7 @@ class PdftoJson:
|
|
56 |
pdf_path (str): Path to the PDF file.
|
57 |
"""
|
58 |
try:
|
|
|
59 |
|
60 |
# Open the PDF file in binary read mode
|
61 |
with open(pdf_path.name, "rb") as pdf_file:
|
@@ -71,13 +98,9 @@ class PdftoJson:
|
|
71 |
# Generate JSON result for the extracted text
|
72 |
json_result = self._get_json(text)
|
73 |
|
74 |
-
# # Clear Extra Spaces
|
75 |
-
# clear_json_result = self._remove_empty_lines(json_result)
|
76 |
-
|
77 |
-
# # Save the JSON result to a file
|
78 |
-
# self._save_json(clear_json_result)
|
79 |
return json_result
|
80 |
|
|
|
81 |
|
82 |
except Exception as e:
|
83 |
-
|
|
|
1 |
import os
|
2 |
import PyPDF2
|
3 |
+
import logging
|
4 |
from langchain import PromptTemplate, LLMChain
|
5 |
from langchain.llms import OpenAI
|
6 |
|
7 |
+
# Configure logging
|
8 |
+
logging.basicConfig(
|
9 |
+
filename='pdftojson.log', # You can adjust the log file name here
|
10 |
+
filemode='a',
|
11 |
+
format='[%(asctime)s] [%(levelname)s] [%(filename)s] [%(lineno)s:%(funcName)s()] %(message)s',
|
12 |
+
datefmt='%Y-%b-%d %H:%M:%S'
|
13 |
+
)
|
14 |
+
LOGGER = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
log_level_env = 'INFO' # You can adjust the log level here
|
17 |
+
log_level_dict = {
|
18 |
+
'DEBUG': logging.DEBUG,
|
19 |
+
'INFO': logging.INFO,
|
20 |
+
'WARNING': logging.WARNING,
|
21 |
+
'ERROR': logging.ERROR,
|
22 |
+
'CRITICAL': logging.CRITICAL
|
23 |
+
}
|
24 |
+
if log_level_env in log_level_dict:
|
25 |
+
log_level = log_level_dict[log_level_env]
|
26 |
+
else:
|
27 |
+
log_level = log_level_dict['INFO']
|
28 |
+
LOGGER.setLevel(log_level)
|
29 |
+
|
30 |
class PdftoJson:
|
31 |
|
32 |
+
def __init__(self,openai_api_key: str):
|
33 |
"""
|
34 |
Initialize the PdftoJson class with OpenAI API key.
|
35 |
"""
|
36 |
+
OPENAI_API_KEY = openai_api_key
|
37 |
+
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
|
38 |
|
39 |
def _get_json(self, input_text: str) -> str:
|
40 |
"""
|
|
|
47 |
str: JSON result containing topics and content.
|
48 |
"""
|
49 |
try:
|
50 |
+
LOGGER.info("Generating JSON result by analyzing input text...")
|
51 |
|
52 |
# Initialize the OpenAI language model with specified settings
|
53 |
llm = OpenAI(temperature=0, max_tokens=1000)
|
|
|
67 |
text = input_text
|
68 |
json_result = llm_chain.run(text)
|
69 |
|
70 |
+
LOGGER.info("Generated JSON result successfully.")
|
71 |
return json_result
|
72 |
|
73 |
except Exception as e:
|
74 |
+
LOGGER.error(f"Error occurred while generating JSON result: {str(e)}")
|
75 |
|
76 |
|
77 |
def extract_text_from_pdf(self, pdf_path: str):
|
|
|
82 |
pdf_path (str): Path to the PDF file.
|
83 |
"""
|
84 |
try:
|
85 |
+
LOGGER.info("Extracting text from PDF, generating JSON result, and saving to a file...")
|
86 |
|
87 |
# Open the PDF file in binary read mode
|
88 |
with open(pdf_path.name, "rb") as pdf_file:
|
|
|
98 |
# Generate JSON result for the extracted text
|
99 |
json_result = self._get_json(text)
|
100 |
|
|
|
|
|
|
|
|
|
|
|
101 |
return json_result
|
102 |
|
103 |
+
LOGGER.info("Extraction, JSON generation, and saving completed.")
|
104 |
|
105 |
except Exception as e:
|
106 |
+
LOGGER.error(f"Error occurred during extraction and processing: {str(e)}")
|