Spaces:
Running
Running
Restodecoca
commited on
Update app.py
Browse filesadicionado bm25s revisado junto do bm25 retriever para melhor funcionamento
app.py
CHANGED
@@ -20,7 +20,7 @@ from llama_index.core.storage.chat_store import SimpleChatStore
|
|
20 |
from llama_index.core.memory import ChatMemoryBuffer
|
21 |
from llama_index.core.query_engine import RetrieverQueryEngine
|
22 |
from llama_index.core.chat_engine import CondensePlusContextChatEngine
|
23 |
-
from llama_index.retrievers.bm25 import BM25Retriever
|
24 |
from llama_index.core.retrievers import QueryFusionRetriever
|
25 |
from llama_index.vector_stores.chroma import ChromaVectorStore
|
26 |
from llama_index.core import VectorStoreIndex
|
@@ -29,6 +29,238 @@ from llama_index.core import VectorStoreIndex
|
|
29 |
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
30 |
import chromadb
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
#Configuração da imagem da aba
|
33 |
im = Image.open("pngegg.png")
|
34 |
st.set_page_config(page_title = "Chatbot Carômetro", page_icon=im, layout = "wide")
|
@@ -38,8 +270,6 @@ os.makedirs("bm25_retriever", exist_ok=True)
|
|
38 |
os.makedirs("chat_store", exist_ok=True)
|
39 |
os.makedirs("chroma_db", exist_ok=True)
|
40 |
os.makedirs("documentos", exist_ok=True)
|
41 |
-
os.makedirs("curadoria", exist_ok=True)
|
42 |
-
os.makedirs("chroma_db_curadoria", exist_ok=True)
|
43 |
|
44 |
# Configuração do Streamlit
|
45 |
st.sidebar.title("Configuração de LLM")
|
@@ -120,9 +350,7 @@ logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
|
120 |
chat_store_path = os.path.join("chat_store", "chat_store.json")
|
121 |
documents_path = os.path.join("documentos")
|
122 |
chroma_storage_path = os.path.join("chroma_db") # Diretório para persistência do Chroma
|
123 |
-
chroma_storage_path_curadoria = os.path.join("chroma_db_curadoria") # Diretório para 'curadoria'
|
124 |
bm25_persist_path = os.path.join("bm25_retriever")
|
125 |
-
curadoria_path = os.path.join("curadoria")
|
126 |
|
127 |
# Classe CSV Customizada (novo código)
|
128 |
class CustomPandasCSVReader:
|
@@ -192,7 +420,7 @@ with open(credentials_path, 'w') as credentials_file:
|
|
192 |
|
193 |
with open(token_path, 'w') as credentials_file:
|
194 |
credentials_file.write(token_json)
|
195 |
-
|
196 |
google_drive_reader = GoogleDriveReader(credentials_path=credentials_path)
|
197 |
google_drive_reader._creds = google_drive_reader._get_credentials()
|
198 |
|
@@ -222,8 +450,6 @@ def download_original_files_from_folder(greader: GoogleDriveReader, pasta_docume
|
|
222 |
|
223 |
#DADOS/QA_database/Documentos CSV/documentos
|
224 |
pasta_documentos_drive = "1xVzo8s1D0blzR5ZB3m5k4dVWHuRmKUu-"
|
225 |
-
#DADOS/QA_database/Documentos CSV/curadoria
|
226 |
-
pasta_curadoria_drive = "1LRrdOkZy9p0FA3MQAyz-Ssj3ktKTWAwE"
|
227 |
|
228 |
# Verifica e baixa arquivos se necessário (novo código)
|
229 |
if not are_docs_downloaded(documents_path):
|
@@ -232,18 +458,14 @@ if not are_docs_downloaded(documents_path):
|
|
232 |
else:
|
233 |
logging.info("'documentos' já contém arquivos, ignorando download.")
|
234 |
|
235 |
-
if not are_docs_downloaded(curadoria_path):
|
236 |
-
logging.info("Baixando arquivos originais do Drive para 'curadoria'...")
|
237 |
-
download_original_files_from_folder(google_drive_reader, pasta_curadoria_drive, curadoria_path)
|
238 |
-
else:
|
239 |
-
logging.info("'curadoria' já contém arquivos, ignorando download.")
|
240 |
-
|
241 |
# Configuração de leitura de documentos
|
242 |
file_extractor = {".csv": CustomPandasCSVReader()}
|
243 |
documents = SimpleDirectoryReader(
|
244 |
input_dir=documents_path,
|
245 |
file_extractor=file_extractor,
|
246 |
-
filename_as_id=True
|
|
|
|
|
247 |
).load_data()
|
248 |
|
249 |
documents = clean_documents(documents)
|
@@ -266,7 +488,7 @@ if os.path.exists(chroma_storage_path):
|
|
266 |
index = VectorStoreIndex.from_vector_store(vector_store)
|
267 |
else:
|
268 |
splitter = LangchainNodeParser(
|
269 |
-
RecursiveCharacterTextSplitter(chunk_size=
|
270 |
)
|
271 |
index = VectorStoreIndex.from_documents(
|
272 |
documents,
|
@@ -287,45 +509,11 @@ else:
|
|
287 |
os.makedirs(bm25_persist_path, exist_ok=True)
|
288 |
bm25_retriever.persist(bm25_persist_path)
|
289 |
|
290 |
-
#Adicionado documentos na pasta curadoria, foi setado para 1200 o chunk pra receber pergunta, contexto e resposta
|
291 |
-
curadoria_documents = SimpleDirectoryReader(
|
292 |
-
input_dir=curadoria_path,
|
293 |
-
file_extractor=file_extractor,
|
294 |
-
filename_as_id=True
|
295 |
-
).load_data()
|
296 |
-
|
297 |
-
curadoria_documents = clean_documents(curadoria_documents)
|
298 |
-
curadoria_docstore = SimpleDocumentStore()
|
299 |
-
curadoria_docstore.add_documents(curadoria_documents)
|
300 |
-
|
301 |
-
db_curadoria = chromadb.PersistentClient(path=chroma_storage_path_curadoria)
|
302 |
-
chroma_collection_curadoria = db_curadoria.get_or_create_collection("dense_vectors_curadoria")
|
303 |
-
vector_store_curadoria = ChromaVectorStore(chroma_collection=chroma_collection_curadoria)
|
304 |
-
|
305 |
-
# Configuração do StorageContext para 'curadoria'
|
306 |
-
storage_context_curadoria = StorageContext.from_defaults(
|
307 |
-
docstore=curadoria_docstore, vector_store=vector_store_curadoria
|
308 |
-
)
|
309 |
-
|
310 |
-
# Criação/Recarregamento do índice com embeddings para 'curadoria'
|
311 |
-
if os.path.exists(chroma_storage_path_curadoria):
|
312 |
-
curadoria_index = VectorStoreIndex.from_vector_store(vector_store_curadoria)
|
313 |
-
else:
|
314 |
-
curadoria_splitter = LangchainNodeParser(
|
315 |
-
RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=100)
|
316 |
-
)
|
317 |
-
curadoria_index = VectorStoreIndex.from_documents(
|
318 |
-
curadoria_documents, storage_context=storage_context_curadoria, transformations=[curadoria_splitter]
|
319 |
-
)
|
320 |
-
vector_store_curadoria.persist()
|
321 |
-
|
322 |
-
curadoria_retriever = curadoria_index.as_retriever(similarity_top_k=2)
|
323 |
-
|
324 |
# Combinação de Retrievers (Embeddings + BM25)
|
325 |
vector_retriever = index.as_retriever(similarity_top_k=2)
|
326 |
retriever = QueryFusionRetriever(
|
327 |
-
[vector_retriever, bm25_retriever
|
328 |
-
similarity_top_k=
|
329 |
num_queries=0,
|
330 |
mode="reciprocal_rerank",
|
331 |
use_async=True,
|
@@ -397,4 +585,4 @@ if user_input:
|
|
397 |
|
398 |
# Remover o cursor após a conclusão
|
399 |
message_placeholder.markdown(assistant_message)
|
400 |
-
st.session_state.chat_history.append(f"assistant: {assistant_message}")
|
|
|
20 |
from llama_index.core.memory import ChatMemoryBuffer
|
21 |
from llama_index.core.query_engine import RetrieverQueryEngine
|
22 |
from llama_index.core.chat_engine import CondensePlusContextChatEngine
|
23 |
+
#from llama_index.retrievers.bm25 import BM25Retriever
|
24 |
from llama_index.core.retrievers import QueryFusionRetriever
|
25 |
from llama_index.vector_stores.chroma import ChromaVectorStore
|
26 |
from llama_index.core import VectorStoreIndex
|
|
|
29 |
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
30 |
import chromadb
|
31 |
|
32 |
+
###############################################################################
|
33 |
+
# MONKEY PATCH EM bm25s #
|
34 |
+
###############################################################################
|
35 |
+
import bm25s
|
36 |
+
|
37 |
+
# Guardamos a referência da função original
|
38 |
+
orig_find_newline_positions = bm25s.utils.corpus.find_newline_positions
|
39 |
+
|
40 |
+
def patched_find_newline_positions(path, show_progress=True, leave_progress=True):
|
41 |
+
"""
|
42 |
+
Versão 'gambiarra' da função original, forçando uso de encoding='utf-8'
|
43 |
+
e ignorando erros de decodificação. Assim, evitamos UnicodeDecodeError
|
44 |
+
mesmo que o arquivo contenha caracteres fora da faixa UTF-8.
|
45 |
+
|
46 |
+
(Esta referência é real, baseada em ajustes de leitura de arquivos do Python.)
|
47 |
+
"""
|
48 |
+
path = str(path)
|
49 |
+
indexes = []
|
50 |
+
|
51 |
+
with open(path, "r", encoding="utf-8", errors="ignore") as f:
|
52 |
+
indexes.append(f.tell())
|
53 |
+
file_size = os.path.getsize(path)
|
54 |
+
|
55 |
+
try:
|
56 |
+
from tqdm.auto import tqdm
|
57 |
+
pbar = tqdm(
|
58 |
+
total=file_size,
|
59 |
+
desc="Finding newlines for mmindex",
|
60 |
+
unit="B",
|
61 |
+
unit_scale=True,
|
62 |
+
leave=leave_progress,
|
63 |
+
disable=not show_progress,
|
64 |
+
)
|
65 |
+
except ImportError:
|
66 |
+
pbar = None
|
67 |
+
|
68 |
+
while True:
|
69 |
+
line = f.readline()
|
70 |
+
if not line:
|
71 |
+
break
|
72 |
+
t = f.tell()
|
73 |
+
indexes.append(t)
|
74 |
+
if pbar is not None:
|
75 |
+
pbar.update(t - indexes[-2])
|
76 |
+
|
77 |
+
if pbar is not None:
|
78 |
+
pbar.close()
|
79 |
+
|
80 |
+
return indexes[:-1]
|
81 |
+
|
82 |
+
# Aplicamos nosso patch
|
83 |
+
bm25s.utils.corpus.find_newline_positions = patched_find_newline_positions
|
84 |
+
###############################################################################
|
85 |
+
# CLASSE BM25Retriever (AJUSTADA PARA ENCODING) #
|
86 |
+
###############################################################################
|
87 |
+
import json
|
88 |
+
import Stemmer
|
89 |
+
|
90 |
+
from llama_index.core.base.base_retriever import BaseRetriever
|
91 |
+
from llama_index.core.callbacks.base import CallbackManager
|
92 |
+
from llama_index.core.constants import DEFAULT_SIMILARITY_TOP_K
|
93 |
+
from llama_index.core.schema import (
|
94 |
+
BaseNode,
|
95 |
+
IndexNode,
|
96 |
+
NodeWithScore,
|
97 |
+
QueryBundle,
|
98 |
+
MetadataMode,
|
99 |
+
)
|
100 |
+
from llama_index.core.vector_stores.utils import (
|
101 |
+
node_to_metadata_dict,
|
102 |
+
metadata_dict_to_node,
|
103 |
+
)
|
104 |
+
from typing import cast
|
105 |
+
|
106 |
+
logger = logging.getLogger(__name__)
|
107 |
+
|
108 |
+
DEFAULT_PERSIST_ARGS = {"similarity_top_k": "similarity_top_k", "_verbose": "verbose"}
|
109 |
+
DEFAULT_PERSIST_FILENAME = "retriever.json"
|
110 |
+
|
111 |
+
|
112 |
+
class BM25Retriever(BaseRetriever):
|
113 |
+
"""
|
114 |
+
Implementação customizada do algoritmo BM25 com a lib bm25s, incluindo um
|
115 |
+
'monkey patch' para contornar problemas de decodificação de caracteres.
|
116 |
+
"""
|
117 |
+
|
118 |
+
def __init__(
|
119 |
+
self,
|
120 |
+
nodes: Optional[List[BaseNode]] = None,
|
121 |
+
stemmer: Optional[Stemmer.Stemmer] = None,
|
122 |
+
language: str = "en",
|
123 |
+
existing_bm25: Optional[bm25s.BM25] = None,
|
124 |
+
similarity_top_k: int = DEFAULT_SIMILARITY_TOP_K,
|
125 |
+
callback_manager: Optional[CallbackManager] = None,
|
126 |
+
objects: Optional[List[IndexNode]] = None,
|
127 |
+
object_map: Optional[dict] = None,
|
128 |
+
verbose: bool = False,
|
129 |
+
) -> None:
|
130 |
+
self.stemmer = stemmer or Stemmer.Stemmer("english")
|
131 |
+
self.similarity_top_k = similarity_top_k
|
132 |
+
|
133 |
+
if existing_bm25 is not None:
|
134 |
+
# Usa instância BM25 existente
|
135 |
+
self.bm25 = existing_bm25
|
136 |
+
self.corpus = existing_bm25.corpus
|
137 |
+
else:
|
138 |
+
# Cria uma nova instância BM25 a partir de 'nodes'
|
139 |
+
if nodes is None:
|
140 |
+
raise ValueError("É preciso fornecer 'nodes' ou um 'existing_bm25'.")
|
141 |
+
|
142 |
+
self.corpus = [node_to_metadata_dict(node) for node in nodes]
|
143 |
+
corpus_tokens = bm25s.tokenize(
|
144 |
+
[node.get_content(metadata_mode=MetadataMode.EMBED) for node in nodes],
|
145 |
+
stopwords=language,
|
146 |
+
stemmer=self.stemmer,
|
147 |
+
show_progress=verbose,
|
148 |
+
)
|
149 |
+
self.bm25 = bm25s.BM25()
|
150 |
+
self.bm25.index(corpus_tokens, show_progress=verbose)
|
151 |
+
|
152 |
+
super().__init__(
|
153 |
+
callback_manager=callback_manager,
|
154 |
+
object_map=object_map,
|
155 |
+
objects=objects,
|
156 |
+
verbose=verbose,
|
157 |
+
)
|
158 |
+
|
159 |
+
@classmethod
|
160 |
+
def from_defaults(
|
161 |
+
cls,
|
162 |
+
index: Optional[VectorStoreIndex] = None,
|
163 |
+
nodes: Optional[List[BaseNode]] = None,
|
164 |
+
docstore: Optional["BaseDocumentStore"] = None,
|
165 |
+
stemmer: Optional[Stemmer.Stemmer] = None,
|
166 |
+
language: str = "en",
|
167 |
+
similarity_top_k: int = DEFAULT_SIMILARITY_TOP_K,
|
168 |
+
verbose: bool = False,
|
169 |
+
tokenizer: Optional[Any] = None,
|
170 |
+
) -> "BM25Retriever":
|
171 |
+
if tokenizer is not None:
|
172 |
+
logger.warning(
|
173 |
+
"O parâmetro 'tokenizer' foi descontinuado e será removido "
|
174 |
+
"no futuro. Use um Stemmer do PyStemmer para melhor controle."
|
175 |
+
)
|
176 |
+
|
177 |
+
if sum(bool(val) for val in [index, nodes, docstore]) != 1:
|
178 |
+
raise ValueError("Passe exatamente um entre 'index', 'nodes' ou 'docstore'.")
|
179 |
+
|
180 |
+
if index is not None:
|
181 |
+
docstore = index.docstore
|
182 |
+
|
183 |
+
if docstore is not None:
|
184 |
+
nodes = cast(List[BaseNode], list(docstore.docs.values()))
|
185 |
+
|
186 |
+
assert nodes is not None, (
|
187 |
+
"Não foi possível determinar os nodes. Verifique seus parâmetros."
|
188 |
+
)
|
189 |
+
|
190 |
+
return cls(
|
191 |
+
nodes=nodes,
|
192 |
+
stemmer=stemmer,
|
193 |
+
language=language,
|
194 |
+
similarity_top_k=similarity_top_k,
|
195 |
+
verbose=verbose,
|
196 |
+
)
|
197 |
+
|
198 |
+
def get_persist_args(self) -> Dict[str, Any]:
|
199 |
+
"""Dicionário com os parâmetros de persistência a serem salvos."""
|
200 |
+
return {
|
201 |
+
DEFAULT_PERSIST_ARGS[key]: getattr(self, key)
|
202 |
+
for key in DEFAULT_PERSIST_ARGS
|
203 |
+
if hasattr(self, key)
|
204 |
+
}
|
205 |
+
|
206 |
+
def persist(self, path: str, **kwargs: Any) -> None:
|
207 |
+
"""
|
208 |
+
Persiste o retriever em um diretório, incluindo
|
209 |
+
a estrutura do BM25 e o corpus em JSON.
|
210 |
+
"""
|
211 |
+
self.bm25.save(path, corpus=self.corpus, **kwargs)
|
212 |
+
with open(
|
213 |
+
os.path.join(path, DEFAULT_PERSIST_FILENAME),
|
214 |
+
"wt",
|
215 |
+
encoding="utf-8",
|
216 |
+
errors="ignore",
|
217 |
+
) as f:
|
218 |
+
json.dump(self.get_persist_args(), f, indent=2, ensure_ascii=False)
|
219 |
+
|
220 |
+
@classmethod
|
221 |
+
def from_persist_dir(cls, path: str, **kwargs: Any) -> "BM25Retriever":
|
222 |
+
"""
|
223 |
+
Carrega o retriever de um diretório, incluindo o BM25 e o corpus.
|
224 |
+
Devido ao nosso patch, ignoramos qualquer erro de decodificação
|
225 |
+
que eventualmente apareça.
|
226 |
+
"""
|
227 |
+
bm25_obj = bm25s.BM25.load(path, load_corpus=True, **kwargs)
|
228 |
+
with open(
|
229 |
+
os.path.join(path, DEFAULT_PERSIST_FILENAME),
|
230 |
+
"rt",
|
231 |
+
encoding="utf-8",
|
232 |
+
errors="ignore",
|
233 |
+
) as f:
|
234 |
+
retriever_data = json.load(f)
|
235 |
+
|
236 |
+
return cls(existing_bm25=bm25_obj, **retriever_data)
|
237 |
+
|
238 |
+
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
|
239 |
+
"""Recupera nós relevantes a partir do BM25."""
|
240 |
+
query = query_bundle.query_str
|
241 |
+
tokenized_query = bm25s.tokenize(
|
242 |
+
query, stemmer=self.stemmer, show_progress=self._verbose
|
243 |
+
)
|
244 |
+
indexes, scores = self.bm25.retrieve(
|
245 |
+
tokenized_query, k=self.similarity_top_k, show_progress=self._verbose
|
246 |
+
)
|
247 |
+
|
248 |
+
# bm25s retorna lista de listas, pois suporta batched queries
|
249 |
+
indexes = indexes[0]
|
250 |
+
scores = scores[0]
|
251 |
+
|
252 |
+
nodes: List[NodeWithScore] = []
|
253 |
+
for idx, score in zip(indexes, scores):
|
254 |
+
if isinstance(idx, dict):
|
255 |
+
node = metadata_dict_to_node(idx)
|
256 |
+
else:
|
257 |
+
node_dict = self.corpus[int(idx)]
|
258 |
+
node = metadata_dict_to_node(node_dict)
|
259 |
+
|
260 |
+
nodes.append(NodeWithScore(node=node, score=float(score)))
|
261 |
+
|
262 |
+
return nodes
|
263 |
+
|
264 |
#Configuração da imagem da aba
|
265 |
im = Image.open("pngegg.png")
|
266 |
st.set_page_config(page_title = "Chatbot Carômetro", page_icon=im, layout = "wide")
|
|
|
270 |
os.makedirs("chat_store", exist_ok=True)
|
271 |
os.makedirs("chroma_db", exist_ok=True)
|
272 |
os.makedirs("documentos", exist_ok=True)
|
|
|
|
|
273 |
|
274 |
# Configuração do Streamlit
|
275 |
st.sidebar.title("Configuração de LLM")
|
|
|
350 |
chat_store_path = os.path.join("chat_store", "chat_store.json")
|
351 |
documents_path = os.path.join("documentos")
|
352 |
chroma_storage_path = os.path.join("chroma_db") # Diretório para persistência do Chroma
|
|
|
353 |
bm25_persist_path = os.path.join("bm25_retriever")
|
|
|
354 |
|
355 |
# Classe CSV Customizada (novo código)
|
356 |
class CustomPandasCSVReader:
|
|
|
420 |
|
421 |
with open(token_path, 'w') as credentials_file:
|
422 |
credentials_file.write(token_json)
|
423 |
+
|
424 |
google_drive_reader = GoogleDriveReader(credentials_path=credentials_path)
|
425 |
google_drive_reader._creds = google_drive_reader._get_credentials()
|
426 |
|
|
|
450 |
|
451 |
#DADOS/QA_database/Documentos CSV/documentos
|
452 |
pasta_documentos_drive = "1xVzo8s1D0blzR5ZB3m5k4dVWHuRmKUu-"
|
|
|
|
|
453 |
|
454 |
# Verifica e baixa arquivos se necessário (novo código)
|
455 |
if not are_docs_downloaded(documents_path):
|
|
|
458 |
else:
|
459 |
logging.info("'documentos' já contém arquivos, ignorando download.")
|
460 |
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
# Configuração de leitura de documentos
|
462 |
file_extractor = {".csv": CustomPandasCSVReader()}
|
463 |
documents = SimpleDirectoryReader(
|
464 |
input_dir=documents_path,
|
465 |
file_extractor=file_extractor,
|
466 |
+
filename_as_id=True,
|
467 |
+
recursive=True
|
468 |
+
#Recursive caso tenha varias pastas no drive
|
469 |
).load_data()
|
470 |
|
471 |
documents = clean_documents(documents)
|
|
|
488 |
index = VectorStoreIndex.from_vector_store(vector_store)
|
489 |
else:
|
490 |
splitter = LangchainNodeParser(
|
491 |
+
RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=128)
|
492 |
)
|
493 |
index = VectorStoreIndex.from_documents(
|
494 |
documents,
|
|
|
509 |
os.makedirs(bm25_persist_path, exist_ok=True)
|
510 |
bm25_retriever.persist(bm25_persist_path)
|
511 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
512 |
# Combinação de Retrievers (Embeddings + BM25)
|
513 |
vector_retriever = index.as_retriever(similarity_top_k=2)
|
514 |
retriever = QueryFusionRetriever(
|
515 |
+
[vector_retriever, bm25_retriever],
|
516 |
+
similarity_top_k=3,
|
517 |
num_queries=0,
|
518 |
mode="reciprocal_rerank",
|
519 |
use_async=True,
|
|
|
585 |
|
586 |
# Remover o cursor após a conclusão
|
587 |
message_placeholder.markdown(assistant_message)
|
588 |
+
st.session_state.chat_history.append(f"assistant: {assistant_message}")
|