Tonic commited on
Commit
3dc4061
·
1 Parent(s): 10b4b34

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -11
app.py CHANGED
@@ -1,17 +1,66 @@
1
- from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
2
- from peft import PeftModel, PeftConfig
3
  import torch
4
  import gradio as gr
5
-
6
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  # Use the base model's ID
8
  base_model_id = "mistralai/Mistral-7B-v0.1"
9
  model_directory = "Tonic/mistralmed"
10
 
11
- # Instantiate the Models
12
- tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left")
13
- #tokenizer.pad_token = tokenizer.eos_token
14
- #tokenizer.padding_side = 'left'
 
15
 
16
 
17
  # Specify the configuration class for the model
@@ -29,9 +78,9 @@ class ChatBot:
29
  def __init__(self):
30
  self.history = []
31
 
32
- def predict(self, input):
33
  # Encode user input
34
- user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt")
35
 
36
  # Concatenate the user input with chat history
37
  if len(self.history) > 0:
@@ -53,7 +102,7 @@ bot = ChatBot()
53
 
54
  title = "👋🏻Welcome to Tonic's MistralMed Chat🚀"
55
  description = "You can use this Space to test out the current model (MistralMed) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on Discord to build together."
56
- examples = [["What is the boiling point of nitrogen"]]
57
 
58
  iface = gr.Interface(
59
  fn=bot.predict,
 
1
+ from transformers import AutoTokenizer, MistralForCausalLM
 
2
  import torch
3
  import gradio as gr
4
+ import random
5
+ from textwrap import wrap
6
+ import random
7
+
8
+ # Functions to Wrap the Prompt Correctly
9
+
10
+ def wrap_text(text, width=90):
11
+ lines = text.split('\n')
12
+ wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
13
+ wrapped_text = '\n'.join(wrapped_lines)
14
+ return wrapped_text
15
+
16
+ def multimodal_prompt(input_text, system_prompt="", max_length=512):
17
+ """
18
+ Generates text using a large language model, given a prompt and a device.
19
+ Args:
20
+ input_text: The input text to generate a response for.
21
+ system_prompt: Optional system prompt.
22
+ max_length: Maximum length of the generated text.
23
+ Returns:
24
+ A string containing the generated text.
25
+ """
26
+ # Modify the input text to include the desired format
27
+ formatted_input = f"""<s>[INST]{input_text}[/INST]"""
28
+
29
+ # Encode the input text
30
+ encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
31
+ model_inputs = encodeds.to(device)
32
+
33
+ # Generate a response using the model
34
+ output = model.generate(
35
+ **model_inputs,
36
+ max_length=max_length,
37
+ use_cache=True,
38
+ early_stopping=True,
39
+ bos_token_id=model.config.bos_token_id,
40
+ eos_token_id=model.config.eos_token_id,
41
+ pad_token_id=model.config.eos_token_id,
42
+ temperature=0.1,
43
+ do_sample=True
44
+ )
45
+
46
+ # Decode the response
47
+ response_text = tokenizer.decode(output[0], skip_special_tokens=True)
48
+
49
+ return response_text
50
+
51
+
52
+ # Define the device
53
+ device = "cuda" if torch.cuda.is_available() else "cpu"
54
+
55
  # Use the base model's ID
56
  base_model_id = "mistralai/Mistral-7B-v0.1"
57
  model_directory = "Tonic/mistralmed"
58
 
59
+ # Instantiate the Tokenizer
60
+ # tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left")
61
+ tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
62
+ tokenizer.pad_token = tokenizer.eos_token
63
+ tokenizer.padding_side = 'left'
64
 
65
 
66
  # Specify the configuration class for the model
 
78
  def __init__(self):
79
  self.history = []
80
 
81
+ def predict(self, input_text):
82
  # Encode user input
83
+ user_input_ids = tokenizer.encode(input_text, return_tensors="pt")
84
 
85
  # Concatenate the user input with chat history
86
  if len(self.history) > 0:
 
102
 
103
  title = "👋🏻Welcome to Tonic's MistralMed Chat🚀"
104
  description = "You can use this Space to test out the current model (MistralMed) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on Discord to build together."
105
+ examples = [["What is the boiling point of nitrogen?"]]
106
 
107
  iface = gr.Interface(
108
  fn=bot.predict,