Spaces:
Sleeping
Sleeping
from threading import Thread | |
import logging | |
import time | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s [%(levelname)s] %(name)s - %(message)s", | |
) | |
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer | |
model_id = "BEE-spoke-data/tFINE-900m-e16-d32-instruct" | |
torch_device = "cuda" if torch.cuda.is_available() else "cpu" | |
logging.info(f"Running on device:\t {torch_device}") | |
logging.info(f"CPU threads:\t {torch.get_num_threads()}") | |
if torch_device == "cuda": | |
model = AutoModelForSeq2SeqLM.from_pretrained( | |
model_id, load_in_8bit=True, device_map="auto" | |
) | |
else: | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_id) | |
try: | |
model = torch.compile(model) | |
except Exception as e: | |
logging.error(f"Unable to compile model:\t{e}") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
def run_generation( | |
user_text, | |
top_p, | |
temperature, | |
top_k, | |
max_new_tokens, | |
repetition_penalty=1.1, | |
length_penalty=1.0, | |
no_repeat_ngram_size=4, | |
use_generation_config=False, | |
): | |
st = time.perf_counter() | |
# Get the model and tokenizer, and tokenize the user text. | |
model_inputs = tokenizer([user_text], return_tensors="pt").to(torch_device) | |
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer | |
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread. | |
streamer = TextIteratorStreamer( | |
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
num_beams=1, | |
top_p=top_p, | |
temperature=float(temperature), | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
length_penalty=length_penalty, | |
no_repeat_ngram_size=no_repeat_ngram_size, | |
renormalize_logits=True, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
# Pull the generated text from the streamer, and update the model output. | |
model_output = "" | |
for new_text in streamer: | |
model_output += new_text | |
yield model_output | |
logging.info("Total rt:\t{rt} sec".format(rt=round(time.perf_counter() - st, 3))) | |
return model_output | |
def reset_textbox(): | |
return gr.update(value="") | |
with gr.Blocks() as demo: | |
duplicate_link = ( | |
"https://huggingface.co/spaces/joaogante/transformers_streaming?duplicate=true" | |
) | |
gr.Markdown( | |
"# 🤗 Transformers 🔥Streaming🔥 on Gradio\n" | |
"This demo showcases the use of the " | |
"[streaming feature](https://huggingface.co/docs/transformers/main/en/generation_strategies#streaming) " | |
"of 🤗 Transformers with Gradio to generate text in real-time. It uses " | |
f"[{model_id}](https://huggingface.co/{model_id}) and the Spaces free compute tier.\n\n" | |
f"Feel free to [duplicate this Space]({duplicate_link}) to try your own models or use this space as a " | |
"template! 💛" | |
) | |
gr.Markdown("---") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
user_text = gr.Textbox( | |
value="How to become a polar bear tamer?", | |
label="User input", | |
) | |
model_output = gr.Textbox(label="Model output", lines=10, interactive=False) | |
button_submit = gr.Button(value="Submit", variant="primary") | |
with gr.Column(scale=1): | |
max_new_tokens = gr.Slider( | |
minimum=32, | |
maximum=1024, | |
value=256, | |
step=32, | |
interactive=True, | |
label="Max New Tokens", | |
) | |
top_p = gr.Slider( | |
minimum=0.05, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
interactive=True, | |
label="Top-p (nucleus sampling)", | |
) | |
top_k = gr.Slider( | |
minimum=1, | |
maximum=50, | |
value=50, | |
step=1, | |
interactive=True, | |
label="Top-k", | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=1.4, | |
value=0.3, | |
step=0.05, | |
interactive=True, | |
label="Temperature", | |
) | |
repetition_penalty = gr.Slider( | |
minimum=0.9, | |
maximum=2.5, | |
value=1.1, | |
step=0.1, | |
interactive=True, | |
label="Repetition Penalty", | |
) | |
length_penalty = gr.Slider( | |
minimum=0.8, | |
maximum=1.5, | |
value=1.0, | |
step=0.1, | |
interactive=True, | |
label="Length Penalty", | |
) | |
user_text.submit( | |
run_generation, | |
[user_text, top_p, temperature, top_k, max_new_tokens, repetition_penalty, length_penalty], | |
model_output, | |
) | |
button_submit.click( | |
run_generation, | |
[user_text, top_p, temperature, top_k, max_new_tokens, repetition_penalty, length_penalty], | |
model_output, | |
) | |
demo.queue(max_size=32).launch(enable_queue=True) |